MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgf Structured version   Visualization version   GIF version

Theorem elabgf 3688
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabgf.1 𝑥𝐴
elabgf.2 𝑥𝜓
elabgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabgf (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elabgf
StepHypRef Expression
1 elabgf.1 . 2 𝑥𝐴
2 nfab1 2910 . . . 4 𝑥{𝑥𝜑}
31, 2nfel 2923 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
4 elabgf.2 . . 3 𝑥𝜓
53, 4nfbi 1902 . 2 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 eleq1 2832 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
7 elabgf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
86, 7bibi12d 345 . 2 (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
9 abid 2721 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
101, 5, 8, 9vtoclgf 3581 1 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wnf 1781  wcel 2108  {cab 2717  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by:  elabf  3689  elab3gf  3700  elrabf  3704  currysetlem  36911  currysetlem1  36913
  Copyright terms: Public domain W3C validator