MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng1 Structured version   Visualization version   GIF version

Theorem elimasng1 6038
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5093 and to prove elimasn1 6039 from it. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elimasng1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))

Proof of Theorem elimasng1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐵𝑉𝐶𝑊) → 𝐶𝑊)
2 imasng 6035 . . 3 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
32adantr 480 . 2 ((𝐵𝑉𝐶𝑊) → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
4 simpr 484 . . 3 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶)
54breq2d 5104 . 2 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥𝐵𝐴𝐶))
61, 3, 5elabd2 3625 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  {csn 4577   class class class wbr 5092  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  elimasn1  6039  elimasng  6040  elimasni  6042  elinisegg  6044
  Copyright terms: Public domain W3C validator