![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasng1 | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5110 and to prove elimasn1 6043 from it. (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elimasng1 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐶 ∈ 𝑊) | |
2 | imasng 6039 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) | |
3 | 2 | adantr 482 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) |
4 | simpr 486 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶) | |
5 | 4 | breq2d 5121 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥 ↔ 𝐵𝐴𝐶)) |
6 | 1, 3, 5 | elabd2 3626 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 {csn 4590 class class class wbr 5109 “ cima 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-cnv 5645 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 |
This theorem is referenced by: elimasn1 6043 elimasng 6044 elimasni 6047 elinisegg 6049 |
Copyright terms: Public domain | W3C validator |