MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng1 Structured version   Visualization version   GIF version

Theorem elimasng1 6035
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5090 and to prove elimasn1 6036 from it. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elimasng1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))

Proof of Theorem elimasng1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐵𝑉𝐶𝑊) → 𝐶𝑊)
2 imasng 6032 . . 3 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
32adantr 480 . 2 ((𝐵𝑉𝐶𝑊) → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
4 simpr 484 . . 3 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶)
54breq2d 5101 . 2 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥𝐵𝐴𝐶))
61, 3, 5elabd2 3620 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  {csn 4573   class class class wbr 5089  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  elimasn1  6036  elimasng  6037  elimasni  6039  elinisegg  6041
  Copyright terms: Public domain W3C validator