![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimasng1 | Structured version Visualization version GIF version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5149 and to prove elimasn1 6086 from it. (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
elimasng1 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐶 ∈ 𝑊) | |
2 | imasng 6082 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 “ {𝐵}) = {𝑥 ∣ 𝐵𝐴𝑥}) |
4 | simpr 485 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶) | |
5 | 4 | breq2d 5160 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥 ↔ 𝐵𝐴𝐶)) |
6 | 1, 3, 5 | elabd2 3660 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 {csn 4628 class class class wbr 5148 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: elimasn1 6086 elimasng 6087 elimasni 6090 elinisegg 6092 |
Copyright terms: Public domain | W3C validator |