MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng1 Structured version   Visualization version   GIF version

Theorem elimasng1 6091
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5150 and to prove elimasn1 6092 from it. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elimasng1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))

Proof of Theorem elimasng1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 483 . 2 ((𝐵𝑉𝐶𝑊) → 𝐶𝑊)
2 imasng 6088 . . 3 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
32adantr 479 . 2 ((𝐵𝑉𝐶𝑊) → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
4 simpr 483 . . 3 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶)
54breq2d 5161 . 2 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥𝐵𝐴𝐶))
61, 3, 5elabd2 3655 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2702  {csn 4630   class class class wbr 5149  cima 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691
This theorem is referenced by:  elimasn1  6092  elimasng  6093  elimasni  6096  elinisegg  6098
  Copyright terms: Public domain W3C validator