MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng1 Structured version   Visualization version   GIF version

Theorem elimasng1 6116
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5167 and to prove elimasn1 6117 from it. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elimasng1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))

Proof of Theorem elimasng1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝐵𝑉𝐶𝑊) → 𝐶𝑊)
2 imasng 6113 . . 3 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
32adantr 480 . 2 ((𝐵𝑉𝐶𝑊) → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
4 simpr 484 . . 3 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶)
54breq2d 5178 . 2 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥𝐵𝐴𝐶))
61, 3, 5elabd2 3683 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  {csn 4648   class class class wbr 5166  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  elimasn1  6117  elimasng  6118  elimasni  6121  elinisegg  6123
  Copyright terms: Public domain W3C validator