MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasng1 Structured version   Visualization version   GIF version

Theorem elimasng1 6085
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) Revise to use df-br 5149 and to prove elimasn1 6086 from it. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
elimasng1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))

Proof of Theorem elimasng1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . 2 ((𝐵𝑉𝐶𝑊) → 𝐶𝑊)
2 imasng 6082 . . 3 (𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
32adantr 481 . 2 ((𝐵𝑉𝐶𝑊) → (𝐴 “ {𝐵}) = {𝑥𝐵𝐴𝑥})
4 simpr 485 . . 3 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶)
54breq2d 5160 . 2 (((𝐵𝑉𝐶𝑊) ∧ 𝑥 = 𝐶) → (𝐵𝐴𝑥𝐵𝐴𝐶))
61, 3, 5elabd2 3660 1 ((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2709  {csn 4628   class class class wbr 5148  cima 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  elimasn1  6086  elimasng  6087  elimasni  6090  elinisegg  6092
  Copyright terms: Public domain W3C validator