Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpdan | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
mpdan.1 | ⊢ (𝜑 → 𝜓) |
mpdan.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mpdan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpdan.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpdan.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |