| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab6g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction. Class version of sb6 2090. (Contributed by SN, 5-Oct-2024.) |
| Ref | Expression |
|---|---|
| elab6g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | eqeq2 2745 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑))) |
| 4 | 3 | albidv 1921 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| 5 | df-clab 2712 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 6 | sb6 2090 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 8 | 1, 4, 7 | vtoclbg 3511 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: elabd2 3621 elabgt 3623 elabgtOLD 3624 elabgtOLDOLD 3625 sbc6g 3767 |
| Copyright terms: Public domain | W3C validator |