![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab6g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction. Class version of sb6 2080. (Contributed by SN, 5-Oct-2024.) |
Ref | Expression |
---|---|
elab6g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2813 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
2 | eqeq2 2736 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑))) |
4 | 3 | albidv 1915 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
5 | df-clab 2702 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
6 | sb6 2080 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
8 | 1, 4, 7 | vtoclbg 3537 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 [wsb 2059 ∈ wcel 2098 {cab 2701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 |
This theorem is referenced by: elabd2 3653 elabgt 3655 elabg 3659 sbc6g 3800 upwordnul 46140 upwordsing 46144 |
Copyright terms: Public domain | W3C validator |