|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elab6g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction. Class version of sb6 2085. (Contributed by SN, 5-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| elab6g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2829 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 2 | eqeq2 2749 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 3 | 2 | imbi1d 341 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑))) | 
| 4 | 3 | albidv 1920 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 5 | df-clab 2715 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 6 | sb6 2085 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 8 | 1, 4, 7 | vtoclbg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 [wsb 2064 ∈ wcel 2108 {cab 2714 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 | 
| This theorem is referenced by: elabd2 3670 elabgt 3672 elabgtOLD 3673 elabg 3676 sbc6g 3818 upwordnul 46895 upwordsing 46899 | 
| Copyright terms: Public domain | W3C validator |