| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabf | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabf.1 | ⊢ Ⅎ𝑥𝜓 |
| elabf.2 | ⊢ 𝐴 ∈ V |
| elabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabf | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | nfcv 2896 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | elabf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | elabf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 2, 3, 4 | elabgf 3627 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 {cab 2711 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-v 3440 |
| This theorem is referenced by: dfon2lem1 35836 sdclem2 37792 sdclem1 37793 scottabf 44347 |
| Copyright terms: Public domain | W3C validator |