MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabf Structured version   Visualization version   GIF version

Theorem elabf 3606
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1 𝑥𝜓
elabf.2 𝐴 ∈ V
elabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabf (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2 𝐴 ∈ V
2 nfcv 2907 . . 3 𝑥𝐴
3 elabf.1 . . 3 𝑥𝜓
4 elabf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
52, 3, 4elabgf 3605 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
61, 5ax-mp 5 1 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wnf 1786  wcel 2106  {cab 2715  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434
This theorem is referenced by:  elabOLD  3610  dfon2lem1  33759  sdclem2  35900  sdclem1  35901  scottabf  41858
  Copyright terms: Public domain W3C validator