| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabf | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabf.1 | ⊢ Ⅎ𝑥𝜓 |
| elabf.2 | ⊢ 𝐴 ∈ V |
| elabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elabf | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabf.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | elabf.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | elabf.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 2, 3, 4 | elabgf 3658 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 6 | 1, 5 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2714 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 |
| This theorem is referenced by: dfon2lem1 35806 sdclem2 37771 sdclem1 37772 scottabf 44231 |
| Copyright terms: Public domain | W3C validator |