MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabf Structured version   Visualization version   GIF version

Theorem elabf 3659
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
elabf.1 𝑥𝜓
elabf.2 𝐴 ∈ V
elabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabf (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf
StepHypRef Expression
1 elabf.2 . 2 𝐴 ∈ V
2 nfcv 2899 . . 3 𝑥𝐴
3 elabf.1 . . 3 𝑥𝜓
4 elabf.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
52, 3, 4elabgf 3658 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
61, 5ax-mp 5 1 (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wnf 1783  wcel 2109  {cab 2714  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-v 3466
This theorem is referenced by:  dfon2lem1  35806  sdclem2  37771  sdclem1  37772  scottabf  44231
  Copyright terms: Public domain W3C validator