MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsnneqOLD Structured version   Visualization version   GIF version

Theorem eldifsnneqOLD 4724
Description: Obsolete version of eldifsnneq 4723 as of 1-Jun-2023. An element of a difference with a singleton is not equal to the element of that singleton. Note that 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
eldifsnneqOLD (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶)

Proof of Theorem eldifsnneqOLD
StepHypRef Expression
1 eldif 3946 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶}))
2 elsng 4581 . . . 4 (𝐴𝐵 → (𝐴 ∈ {𝐶} ↔ 𝐴 = 𝐶))
32biimprd 250 . . 3 (𝐴𝐵 → (𝐴 = 𝐶𝐴 ∈ {𝐶}))
43con3dimp 411 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶}) → ¬ 𝐴 = 𝐶)
51, 4sylbi 219 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3933  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-dif 3939  df-sn 4568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator