![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifsnneq | Structured version Visualization version GIF version |
Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that (¬ 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.) |
Ref | Expression |
---|---|
eldifsnneq | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4794 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) | |
2 | 1 | neneqd 2946 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ∖ cdif 3946 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-sn 4630 |
This theorem is referenced by: mpodifsnif 7523 symgextfv 19286 evlslem3 21643 evlslem1 21645 2sqreultblem 26951 qsdrngi 32609 elzdif0 32960 bj-fvsnun1 36136 evlsbagval 41138 selvvvval 41157 clsk3nimkb 42791 fdmdifeqresdif 47017 |
Copyright terms: Public domain | W3C validator |