| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnneq | Structured version Visualization version GIF version | ||
| Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that (¬ 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.) |
| Ref | Expression |
|---|---|
| eldifsnneq | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4739 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) | |
| 2 | 1 | neneqd 2933 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-sn 4574 |
| This theorem is referenced by: mpodifsnif 7461 symgextfv 19330 evlslem3 22015 evlslem1 22017 2sqreultblem 27386 qsdrngi 33460 elzdif0 33993 fineqvnttrclselem1 35141 bj-fvsnun1 37299 evlsbagval 42658 selvvvval 42677 clsk3nimkb 44132 fdmdifeqresdif 48441 |
| Copyright terms: Public domain | W3C validator |