| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifsnneq | Structured version Visualization version GIF version | ||
| Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that (¬ 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.) |
| Ref | Expression |
|---|---|
| eldifsnneq | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4757 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) | |
| 2 | 1 | neneqd 2931 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-sn 4593 |
| This theorem is referenced by: mpodifsnif 7507 symgextfv 19355 evlslem3 21994 evlslem1 21996 2sqreultblem 27366 qsdrngi 33473 elzdif0 33977 bj-fvsnun1 37250 evlsbagval 42561 selvvvval 42580 clsk3nimkb 44036 fdmdifeqresdif 48334 |
| Copyright terms: Public domain | W3C validator |