Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldifsnneq | Structured version Visualization version GIF version |
Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that (¬ 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.) |
Ref | Expression |
---|---|
eldifsnneq | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4683 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) | |
2 | 1 | neneqd 2956 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 {csn 4525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-v 3411 df-dif 3863 df-sn 4526 |
This theorem is referenced by: mpodifsnif 7266 symgextfv 18618 evlslem3 20848 evlslem1 20850 2sqreultblem 26136 elzdif0 31453 bj-fvsnun1 34976 evlsbagval 39808 mhphf 39818 clsk3nimkb 41144 fdmdifeqresdif 45138 |
Copyright terms: Public domain | W3C validator |