MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsnneq Structured version   Visualization version   GIF version

Theorem eldifsnneq 4729
Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.)
Assertion
Ref Expression
eldifsnneq (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶)

Proof of Theorem eldifsnneq
StepHypRef Expression
1 eldifsni 4728 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
21neneqd 2949 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2109  cdif 3888  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-v 3432  df-dif 3894  df-sn 4567
This theorem is referenced by:  mpodifsnif  7380  symgextfv  19007  evlslem3  21271  evlslem1  21273  2sqreultblem  26577  elzdif0  31909  bj-fvsnun1  35405  evlsbagval  40255  mhphf  40265  clsk3nimkb  41603  fdmdifeqresdif  45629
  Copyright terms: Public domain W3C validator