![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifsnneq | Structured version Visualization version GIF version |
Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that (¬ 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.) |
Ref | Expression |
---|---|
eldifsnneq | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4795 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) | |
2 | 1 | neneqd 2943 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-sn 4632 |
This theorem is referenced by: mpodifsnif 7548 symgextfv 19451 evlslem3 22122 evlslem1 22124 2sqreultblem 27507 qsdrngi 33503 elzdif0 33943 bj-fvsnun1 37238 evlsbagval 42553 selvvvval 42572 clsk3nimkb 44030 fdmdifeqresdif 48187 |
Copyright terms: Public domain | W3C validator |