MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsnneq Structured version   Visualization version   GIF version

Theorem eldifsnneq 4740
Description: An element of a difference with a singleton is not equal to the element of that singleton. Note that 𝐴 ∈ {𝐶} → ¬ 𝐴 = 𝐶) need not hold if 𝐴 is a proper class. (Contributed by BJ, 18-Mar-2023.) (Proof shortened by Steven Nguyen, 1-Jun-2023.)
Assertion
Ref Expression
eldifsnneq (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶)

Proof of Theorem eldifsnneq
StepHypRef Expression
1 eldifsni 4739 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
21neneqd 2933 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → ¬ 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  cdif 3894  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-sn 4574
This theorem is referenced by:  mpodifsnif  7461  symgextfv  19330  evlslem3  22015  evlslem1  22017  2sqreultblem  27386  qsdrngi  33460  elzdif0  33993  fineqvnttrclselem1  35141  bj-fvsnun1  37299  evlsbagval  42658  selvvvval  42677  clsk3nimkb  44132  fdmdifeqresdif  48441
  Copyright terms: Public domain W3C validator