MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldifsn Structured version   Visualization version   GIF version

Theorem neldifsn 4794
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2947 . 2 ¬ 𝐴𝐴
2 eldifsni 4792 . 2 (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴𝐴)
31, 2mto 196 1 ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2104  wne 2938  cdif 3944  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-v 3474  df-dif 3950  df-sn 4628
This theorem is referenced by:  neldifsnd  4795  fofinf1o  9329  dfac9  10133  xrsupss  13292  hashgt23el  14388  fvsetsid  17105  islbs3  20913  islindf4  21612  ufinffr  23653  i1fd  25430  finsumvtxdg2sstep  29073  matunitlindflem1  36787  poimirlem25  36816  itg2addnclem  36842  itg2addnclem2  36843  prter2  38054
  Copyright terms: Public domain W3C validator