Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2948 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | eldifsni 4728 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2103 ≠ wne 2939 ∖ cdif 3888 {csn 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-ext 2706 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1541 df-ex 1779 df-sb 2065 df-clab 2713 df-cleq 2727 df-clel 2813 df-ne 2940 df-v 3438 df-dif 3894 df-sn 4565 |
This theorem is referenced by: neldifsnd 4731 fofinf1o 9152 dfac9 9952 xrsupss 13103 hashgt23el 14198 fvsetsid 16928 islbs3 20480 islindf4 21108 ufinffr 23143 i1fd 24908 finsumvtxdg2sstep 28014 matunitlindflem1 35831 poimirlem25 35860 itg2addnclem 35886 itg2addnclem2 35887 prter2 37105 |
Copyright terms: Public domain | W3C validator |