MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldifsn Structured version   Visualization version   GIF version

Theorem neldifsn 4797
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2947 . 2 ¬ 𝐴𝐴
2 eldifsni 4795 . 2 (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴𝐴)
31, 2mto 197 1 ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  wne 2938  cdif 3960  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-sn 4632
This theorem is referenced by:  neldifsnd  4798  fofinf1o  9370  dfac9  10175  1div0  11920  xrsupss  13348  hashgt23el  14460  fvsetsid  17202  islbs3  21175  islindf4  21876  ufinffr  23953  i1fd  25730  finsumvtxdg2sstep  29582  matunitlindflem1  37603  poimirlem25  37632  itg2addnclem  37658  itg2addnclem2  37659  prter2  38863  uspgrimprop  47811
  Copyright terms: Public domain W3C validator