| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2935 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
| 2 | eldifsni 4757 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-sn 4593 |
| This theorem is referenced by: neldifsnd 4760 fofinf1o 9290 dfac9 10097 1div0 11844 xrsupss 13276 hashgt23el 14396 fvsetsid 17145 islbs3 21072 islindf4 21754 ufinffr 23823 i1fd 25589 finsumvtxdg2sstep 29484 matunitlindflem1 37617 poimirlem25 37646 itg2addnclem 37672 itg2addnclem2 37673 prter2 38881 |
| Copyright terms: Public domain | W3C validator |