| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2941 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
| 2 | eldifsni 4766 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-sn 4602 |
| This theorem is referenced by: neldifsnd 4769 fofinf1o 9344 dfac9 10151 1div0 11896 xrsupss 13325 hashgt23el 14442 fvsetsid 17187 islbs3 21116 islindf4 21798 ufinffr 23867 i1fd 25634 finsumvtxdg2sstep 29529 matunitlindflem1 37640 poimirlem25 37669 itg2addnclem 37695 itg2addnclem2 37696 prter2 38899 |
| Copyright terms: Public domain | W3C validator |