![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2955 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | eldifsni 4815 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-sn 4649 |
This theorem is referenced by: neldifsnd 4818 fofinf1o 9400 dfac9 10206 1div0 11949 xrsupss 13371 hashgt23el 14473 fvsetsid 17215 islbs3 21180 islindf4 21881 ufinffr 23958 i1fd 25735 finsumvtxdg2sstep 29585 matunitlindflem1 37576 poimirlem25 37605 itg2addnclem 37631 itg2addnclem2 37632 prter2 38837 uspgrimprop 47757 |
Copyright terms: Public domain | W3C validator |