MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldifsn Structured version   Visualization version   GIF version

Theorem neldifsn 4756
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2934 . 2 ¬ 𝐴𝐴
2 eldifsni 4754 . 2 (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴𝐴)
31, 2mto 197 1 ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  wne 2925  cdif 3911  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-sn 4590
This theorem is referenced by:  neldifsnd  4757  fofinf1o  9283  dfac9  10090  1div0  11837  xrsupss  13269  hashgt23el  14389  fvsetsid  17138  islbs3  21065  islindf4  21747  ufinffr  23816  i1fd  25582  finsumvtxdg2sstep  29477  matunitlindflem1  37610  poimirlem25  37639  itg2addnclem  37665  itg2addnclem2  37666  prter2  38874
  Copyright terms: Public domain W3C validator