| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2934 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
| 2 | eldifsni 4754 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-sn 4590 |
| This theorem is referenced by: neldifsnd 4757 fofinf1o 9283 dfac9 10090 1div0 11837 xrsupss 13269 hashgt23el 14389 fvsetsid 17138 islbs3 21065 islindf4 21747 ufinffr 23816 i1fd 25582 finsumvtxdg2sstep 29477 matunitlindflem1 37610 poimirlem25 37639 itg2addnclem 37665 itg2addnclem2 37666 prter2 38874 |
| Copyright terms: Public domain | W3C validator |