Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2951 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | eldifsni 4720 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-sn 4559 |
This theorem is referenced by: neldifsnd 4723 fofinf1o 9024 dfac9 9823 xrsupss 12972 hashgt23el 14067 fvsetsid 16797 islbs3 20332 islindf4 20955 ufinffr 22988 i1fd 24750 finsumvtxdg2sstep 27819 matunitlindflem1 35700 poimirlem25 35729 itg2addnclem 35755 itg2addnclem2 35756 prter2 36822 |
Copyright terms: Public domain | W3C validator |