| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version | ||
| Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2934 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
| 2 | eldifsni 4750 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-sn 4586 |
| This theorem is referenced by: neldifsnd 4753 fofinf1o 9259 dfac9 10066 1div0 11813 xrsupss 13245 hashgt23el 14365 fvsetsid 17114 islbs3 21041 islindf4 21723 ufinffr 23792 i1fd 25558 finsumvtxdg2sstep 29453 matunitlindflem1 37583 poimirlem25 37612 itg2addnclem 37638 itg2addnclem2 37639 prter2 38847 |
| Copyright terms: Public domain | W3C validator |