![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neldifsn | Structured version Visualization version GIF version |
Description: The class 𝐴 is not in (𝐵 ∖ {𝐴}). (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
neldifsn | ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2947 | . 2 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | eldifsni 4795 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐴}) → 𝐴 ≠ 𝐴) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 ≠ wne 2938 ∖ cdif 3960 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-sn 4632 |
This theorem is referenced by: neldifsnd 4798 fofinf1o 9370 dfac9 10175 1div0 11920 xrsupss 13348 hashgt23el 14460 fvsetsid 17202 islbs3 21175 islindf4 21876 ufinffr 23953 i1fd 25730 finsumvtxdg2sstep 29582 matunitlindflem1 37603 poimirlem25 37632 itg2addnclem 37658 itg2addnclem2 37659 prter2 38863 uspgrimprop 47811 |
Copyright terms: Public domain | W3C validator |