MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpi Structured version   Visualization version   GIF version

Theorem eltpi 4623
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 4621 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
21ibi 266 1 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1539  wcel 2106  {ctp 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-pr 4564  df-tp 4566
This theorem is referenced by:  prm23lt5  16515  perfectlem2  26378  zabsle1  26444  cyc3co2  31407  sgnmulsgn  32516  sgnmulsgp  32517  kur14lem7  33174  fmtnofz04prm  45029  perfectALTVlem2  45174
  Copyright terms: Public domain W3C validator