| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltpi | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpi | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltpg 4638 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 {ctp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 df-tp 4580 |
| This theorem is referenced by: fvf1tp 13695 tpfo 14409 prm23lt5 16728 perfectlem2 27169 zabsle1 27235 sgnmulsgn 32830 sgnmulsgp 32831 gsumtp 33045 cyc3co2 33116 kur14lem7 35277 omcl3g 43451 fmtnofz04prm 47701 perfectALTVlem2 47846 gpgprismgr4cycllem7 48225 pgnbgreunbgrlem3 48242 pgnbgreunbgrlem6 48248 |
| Copyright terms: Public domain | W3C validator |