Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eltpi | Structured version Visualization version GIF version |
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltpi | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltpg 4601 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
2 | 1 | ibi 270 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1088 = wceq 1543 ∈ wcel 2110 {ctp 4545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-un 3871 df-sn 4542 df-pr 4544 df-tp 4546 |
This theorem is referenced by: prm23lt5 16367 perfectlem2 26111 zabsle1 26177 cyc3co2 31126 sgnmulsgn 32228 sgnmulsgp 32229 kur14lem7 32887 fmtnofz04prm 44702 perfectALTVlem2 44847 |
Copyright terms: Public domain | W3C validator |