MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpi Structured version   Visualization version   GIF version

Theorem eltpi 4642
Description: A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpi (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))

Proof of Theorem eltpi
StepHypRef Expression
1 eltpg 4640 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
21ibi 267 1 (𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2109  {ctp 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-sn 4580  df-pr 4582  df-tp 4584
This theorem is referenced by:  fvf1tp  13711  tpfo  14425  prm23lt5  16744  perfectlem2  27157  zabsle1  27223  sgnmulsgn  32800  sgnmulsgp  32801  gsumtp  33024  cyc3co2  33095  kur14lem7  35184  omcl3g  43307  fmtnofz04prm  47562  perfectALTVlem2  47707  gpgprismgr4cycllem7  48086  pgnbgreunbgrlem3  48103  pgnbgreunbgrlem6  48109
  Copyright terms: Public domain W3C validator