MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpg Structured version   Visualization version   GIF version

Theorem eltpg 4686
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 4648 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
2 elsng 4640 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷))
31, 2orbi12d 919 . 2 (𝐴𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷)))
4 df-tp 4631 . . . 4 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
54eleq2i 2833 . . 3 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}))
6 elun 4153 . . 3 (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
75, 6bitri 275 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
8 df-3or 1088 . 2 ((𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷))
93, 7, 83bitr4g 314 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 848  w3o 1086   = wceq 1540  wcel 2108  cun 3949  {csn 4626  {cpr 4628  {ctp 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-sn 4627  df-pr 4629  df-tp 4631
This theorem is referenced by:  eldiftp  4687  eltpi  4688  eltp  4689  el7g  4690  tpid1g  4769  tpid2g  4771  tpid3g  4772  f1dom3fv3dif  7288  f1dom3el3dif  7289  lcmftp  16673  estrreslem2  18183  1cubr  26885  zabsle1  27340  nb3grprlem1  29397
  Copyright terms: Public domain W3C validator