MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltpg Structured version   Visualization version   GIF version

Theorem eltpg 4690
Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
eltpg (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))

Proof of Theorem eltpg
StepHypRef Expression
1 elprg 4650 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
2 elsng 4643 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷))
31, 2orbi12d 915 . 2 (𝐴𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷)))
4 df-tp 4634 . . . 4 {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷})
54eleq2i 2823 . . 3 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}))
6 elun 4149 . . 3 (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
75, 6bitri 274 . 2 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}))
8 df-3or 1086 . 2 ((𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷) ↔ ((𝐴 = 𝐵𝐴 = 𝐶) ∨ 𝐴 = 𝐷))
93, 7, 83bitr4g 313 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843  w3o 1084   = wceq 1539  wcel 2104  cun 3947  {csn 4629  {cpr 4631  {ctp 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-un 3954  df-sn 4630  df-pr 4632  df-tp 4634
This theorem is referenced by:  eldiftp  4691  eltpi  4692  eltp  4693  tpid1g  4774  tpid2g  4776  tpid3g  4777  f1dom3fv3dif  7271  f1dom3el3dif  7272  lcmftp  16579  estrreslem2  18096  1cubr  26581  zabsle1  27033  nb3grprlem1  28902
  Copyright terms: Public domain W3C validator