| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltpg | Structured version Visualization version GIF version | ||
| Description: Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltpg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 4629 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 2 | elsng 4620 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐷} ↔ 𝐴 = 𝐷)) | |
| 3 | 1, 2 | orbi12d 918 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷}) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷))) |
| 4 | df-tp 4611 | . . . 4 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | |
| 5 | 4 | eleq2i 2827 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ 𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷})) |
| 6 | elun 4133 | . . 3 ⊢ (𝐴 ∈ ({𝐵, 𝐶} ∪ {𝐷}) ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) | |
| 7 | 5, 6 | bitri 275 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 ∈ {𝐵, 𝐶} ∨ 𝐴 ∈ {𝐷})) |
| 8 | df-3or 1087 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷) ↔ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∨ 𝐴 = 𝐷)) | |
| 9 | 3, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 {csn 4606 {cpr 4608 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: eldiftp 4668 eltpi 4669 eltp 4670 el7g 4671 tpid1g 4750 tpid2g 4752 tpid3g 4753 f1dom3fv3dif 7266 f1dom3el3dif 7267 lcmftp 16660 estrreslem2 18155 1cubr 26809 zabsle1 27264 nb3grprlem1 29364 cos9thpiminplylem1 33821 |
| Copyright terms: Public domain | W3C validator |