| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5635 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4169 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5633 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5633 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3437 ∩ cin 3897 × cxp 5619 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-in 3905 df-opab 5158 df-xp 5627 df-res 5633 |
| This theorem is referenced by: reseq2i 5932 reseq2d 5935 resabs1 5962 resima2 5972 reldisjun 5988 imaeq2 6012 resdisj 6124 dfpo2 6251 fimadmfoALT 6754 fressnfv 7102 tfrlem1 8304 tfrlem9 8313 tfrlem11 8316 tfrlem12 8317 tfr2b 8324 tz7.44-1 8334 tz7.44-2 8335 tz7.44-3 8336 rdglem1 8343 fnfi 9098 fseqenlem1 9926 rtrclreclem4 14975 psgnprfval1 19442 gsumzaddlem 19841 gsum2dlem2 19891 gsumle 20065 znunithash 21510 islinds 21755 lmbr2 23194 lmff 23236 kgencn2 23492 ptcmpfi 23748 tsmsgsum 24074 tsmsres 24079 tsmsf1o 24080 tsmsxplem1 24088 tsmsxp 24090 ustval 24138 xrge0gsumle 24769 xrge0tsms 24770 lmmbr2 25206 lmcau 25260 limcun 25843 jensen 26946 wilthlem2 27026 wilthlem3 27027 hhssnvt 31266 hhsssh 31270 foresf1o 32505 xrge0tsmsd 33083 rprmdvdsprod 33543 esumsnf 34149 subfacp1lem3 35298 subfacp1lem5 35300 erdszelem1 35307 erdsze 35318 erdsze2lem2 35320 cvmscbv 35374 cvmshmeo 35387 cvmsss2 35390 eldm3 35877 dfrdg2 35909 bj-diagval 37291 mbfresfi 37779 disjresin 38351 elcoeleqvrels 38764 eleldisjs 38899 eldisjeq 38912 eqvrelqseqdisj3 39002 mzpcompact2lem 42908 seff 44466 wessf1ornlem 45345 fouriersw 46391 sge0tsms 46540 sge0f1o 46542 sge0sup 46551 meadjuni 46617 ismeannd 46627 psmeasurelem 46630 psmeasure 46631 omeunile 46665 isomennd 46691 hoidmvlelem3 46757 |
| Copyright terms: Public domain | W3C validator |