| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5655 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4186 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5653 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5653 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3450 ∩ cin 3916 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-in 3924 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: reseq2i 5950 reseq2d 5953 resabs1 5980 resima2 5990 reldisjun 6006 imaeq2 6030 resdisj 6145 dfpo2 6272 fimadmfoALT 6786 fressnfv 7135 tfrlem1 8347 tfrlem9 8356 tfrlem11 8359 tfrlem12 8360 tfr2b 8367 tz7.44-1 8377 tz7.44-2 8378 tz7.44-3 8379 rdglem1 8386 fnfi 9148 fseqenlem1 9984 rtrclreclem4 15034 psgnprfval1 19459 gsumzaddlem 19858 gsum2dlem2 19908 znunithash 21481 islinds 21725 lmbr2 23153 lmff 23195 kgencn2 23451 ptcmpfi 23707 tsmsgsum 24033 tsmsres 24038 tsmsf1o 24039 tsmsxplem1 24047 tsmsxp 24049 ustval 24097 xrge0gsumle 24729 xrge0tsms 24730 lmmbr2 25166 lmcau 25220 limcun 25803 jensen 26906 wilthlem2 26986 wilthlem3 26987 hhssnvt 31201 hhsssh 31205 foresf1o 32440 xrge0tsmsd 33009 gsumle 33045 rprmdvdsprod 33512 esumsnf 34061 subfacp1lem3 35176 subfacp1lem5 35178 erdszelem1 35185 erdsze 35196 erdsze2lem2 35198 cvmscbv 35252 cvmshmeo 35265 cvmsss2 35268 eldm3 35755 dfrdg2 35790 bj-diagval 37169 mbfresfi 37667 disjresin 38235 elcoeleqvrels 38593 eleldisjs 38727 eldisjeq 38740 eqvrelqseqdisj3 38830 mzpcompact2lem 42746 seff 44305 wessf1ornlem 45186 fouriersw 46236 sge0tsms 46385 sge0f1o 46387 sge0sup 46396 meadjuni 46462 ismeannd 46472 psmeasurelem 46475 psmeasure 46476 omeunile 46510 isomennd 46536 hoidmvlelem3 46602 |
| Copyright terms: Public domain | W3C validator |