![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5703 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 4228 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 5701 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 5701 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3478 ∩ cin 3962 × cxp 5687 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-in 3970 df-opab 5211 df-xp 5695 df-res 5701 |
This theorem is referenced by: reseq2i 5997 reseq2d 6000 resabs1 6027 resima2 6036 reldisjun 6052 imaeq2 6076 resdisj 6191 dfpo2 6318 fimadmfoALT 6832 fressnfv 7180 tfrlem1 8415 tfrlem9 8424 tfrlem11 8427 tfrlem12 8428 tfr2b 8435 tz7.44-1 8445 tz7.44-2 8446 tz7.44-3 8447 rdglem1 8454 fnfi 9216 fseqenlem1 10062 rtrclreclem4 15097 psgnprfval1 19555 gsumzaddlem 19954 gsum2dlem2 20004 znunithash 21601 islinds 21847 lmbr2 23283 lmff 23325 kgencn2 23581 ptcmpfi 23837 tsmsgsum 24163 tsmsres 24168 tsmsf1o 24169 tsmsxplem1 24177 tsmsxp 24179 ustval 24227 xrge0gsumle 24869 xrge0tsms 24870 lmmbr2 25307 lmcau 25361 limcun 25945 jensen 27047 wilthlem2 27127 wilthlem3 27128 hhssnvt 31294 hhsssh 31298 foresf1o 32532 xrge0tsmsd 33048 gsumle 33084 rprmdvdsprod 33542 esumsnf 34045 subfacp1lem3 35167 subfacp1lem5 35169 erdszelem1 35176 erdsze 35187 erdsze2lem2 35189 cvmscbv 35243 cvmshmeo 35256 cvmsss2 35259 eldm3 35741 dfrdg2 35777 bj-diagval 37157 mbfresfi 37653 disjresin 38221 elcoeleqvrels 38577 eleldisjs 38710 eldisjeq 38723 eqvrelqseqdisj3 38813 mzpcompact2lem 42739 seff 44305 wessf1ornlem 45128 fouriersw 46187 sge0tsms 46336 sge0f1o 46338 sge0sup 46347 meadjuni 46413 ismeannd 46423 psmeasurelem 46426 psmeasure 46427 omeunile 46461 isomennd 46487 hoidmvlelem3 46553 |
Copyright terms: Public domain | W3C validator |