| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5625 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4165 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5623 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5623 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 ∩ cin 3896 × cxp 5609 ↾ cres 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 df-opab 5149 df-xp 5617 df-res 5623 |
| This theorem is referenced by: reseq2i 5920 reseq2d 5923 resabs1 5950 resima2 5960 reldisjun 5976 imaeq2 6000 resdisj 6111 dfpo2 6238 fimadmfoALT 6741 fressnfv 7088 tfrlem1 8290 tfrlem9 8299 tfrlem11 8302 tfrlem12 8303 tfr2b 8310 tz7.44-1 8320 tz7.44-2 8321 tz7.44-3 8322 rdglem1 8329 fnfi 9082 fseqenlem1 9910 rtrclreclem4 14963 psgnprfval1 19429 gsumzaddlem 19828 gsum2dlem2 19878 gsumle 20052 znunithash 21496 islinds 21741 lmbr2 23169 lmff 23211 kgencn2 23467 ptcmpfi 23723 tsmsgsum 24049 tsmsres 24054 tsmsf1o 24055 tsmsxplem1 24063 tsmsxp 24065 ustval 24113 xrge0gsumle 24744 xrge0tsms 24745 lmmbr2 25181 lmcau 25235 limcun 25818 jensen 26921 wilthlem2 27001 wilthlem3 27002 hhssnvt 31237 hhsssh 31241 foresf1o 32476 xrge0tsmsd 33034 rprmdvdsprod 33491 esumsnf 34069 subfacp1lem3 35218 subfacp1lem5 35220 erdszelem1 35227 erdsze 35238 erdsze2lem2 35240 cvmscbv 35294 cvmshmeo 35307 cvmsss2 35310 eldm3 35797 dfrdg2 35829 bj-diagval 37208 mbfresfi 37706 disjresin 38274 elcoeleqvrels 38632 eleldisjs 38766 eldisjeq 38779 eqvrelqseqdisj3 38869 mzpcompact2lem 42784 seff 44342 wessf1ornlem 45222 fouriersw 46269 sge0tsms 46418 sge0f1o 46420 sge0sup 46429 meadjuni 46495 ismeannd 46505 psmeasurelem 46508 psmeasure 46509 omeunile 46543 isomennd 46569 hoidmvlelem3 46635 |
| Copyright terms: Public domain | W3C validator |