| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5637 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4173 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5635 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5635 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3438 ∩ cin 3904 × cxp 5621 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-in 3912 df-opab 5158 df-xp 5629 df-res 5635 |
| This theorem is referenced by: reseq2i 5931 reseq2d 5934 resabs1 5961 resima2 5971 reldisjun 5987 imaeq2 6011 resdisj 6122 dfpo2 6248 fimadmfoALT 6751 fressnfv 7098 tfrlem1 8305 tfrlem9 8314 tfrlem11 8317 tfrlem12 8318 tfr2b 8325 tz7.44-1 8335 tz7.44-2 8336 tz7.44-3 8337 rdglem1 8344 fnfi 9102 fseqenlem1 9937 rtrclreclem4 14986 psgnprfval1 19419 gsumzaddlem 19818 gsum2dlem2 19868 gsumle 20042 znunithash 21489 islinds 21734 lmbr2 23162 lmff 23204 kgencn2 23460 ptcmpfi 23716 tsmsgsum 24042 tsmsres 24047 tsmsf1o 24048 tsmsxplem1 24056 tsmsxp 24058 ustval 24106 xrge0gsumle 24738 xrge0tsms 24739 lmmbr2 25175 lmcau 25229 limcun 25812 jensen 26915 wilthlem2 26995 wilthlem3 26996 hhssnvt 31227 hhsssh 31231 foresf1o 32466 xrge0tsmsd 33028 rprmdvdsprod 33484 esumsnf 34033 subfacp1lem3 35157 subfacp1lem5 35159 erdszelem1 35166 erdsze 35177 erdsze2lem2 35179 cvmscbv 35233 cvmshmeo 35246 cvmsss2 35249 eldm3 35736 dfrdg2 35771 bj-diagval 37150 mbfresfi 37648 disjresin 38216 elcoeleqvrels 38574 eleldisjs 38708 eldisjeq 38721 eqvrelqseqdisj3 38811 mzpcompact2lem 42727 seff 44285 wessf1ornlem 45166 fouriersw 46216 sge0tsms 46365 sge0f1o 46367 sge0sup 46376 meadjuni 46442 ismeannd 46452 psmeasurelem 46455 psmeasure 46456 omeunile 46490 isomennd 46516 hoidmvlelem3 46582 |
| Copyright terms: Public domain | W3C validator |