![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5690 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 4212 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 5688 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 5688 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2797 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Vcvv 3474 ∩ cin 3947 × cxp 5674 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-in 3955 df-opab 5211 df-xp 5682 df-res 5688 |
This theorem is referenced by: reseq2i 5978 reseq2d 5981 resabs1 6011 resima2 6016 reldisjun 6032 imaeq2 6055 resdisj 6168 dfpo2 6295 fimadmfoALT 6816 fressnfv 7160 tfrlem1 8378 tfrlem9 8387 tfrlem11 8390 tfrlem12 8391 tfr2b 8398 tz7.44-1 8408 tz7.44-2 8409 tz7.44-3 8410 rdglem1 8417 fnfi 9183 fseqenlem1 10021 rtrclreclem4 15012 psgnprfval1 19431 gsumzaddlem 19830 gsum2dlem2 19880 znunithash 21339 islinds 21583 lmbr2 22983 lmff 23025 kgencn2 23281 ptcmpfi 23537 tsmsgsum 23863 tsmsres 23868 tsmsf1o 23869 tsmsxplem1 23877 tsmsxp 23879 ustval 23927 xrge0gsumle 24569 xrge0tsms 24570 lmmbr2 25000 lmcau 25054 limcun 25636 jensen 26717 wilthlem2 26797 wilthlem3 26798 hhssnvt 30773 hhsssh 30777 foresf1o 31997 xrge0tsmsd 32467 gsumle 32500 esumsnf 33348 subfacp1lem3 34459 subfacp1lem5 34461 erdszelem1 34468 erdsze 34479 erdsze2lem2 34481 cvmscbv 34535 cvmshmeo 34548 cvmsss2 34551 eldm3 35023 dfrdg2 35059 bj-diagval 36358 mbfresfi 36837 disjresin 37409 elcoeleqvrels 37768 eleldisjs 37901 eldisjeq 37914 eqvrelqseqdisj3 38004 mzpcompact2lem 41791 seff 43370 wessf1ornlem 44183 fouriersw 45246 sge0tsms 45395 sge0f1o 45397 sge0sup 45406 meadjuni 45472 ismeannd 45482 psmeasurelem 45485 psmeasure 45486 omeunile 45520 isomennd 45546 hoidmvlelem3 45612 |
Copyright terms: Public domain | W3C validator |