Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5594 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 4143 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 5592 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 5592 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3422 ∩ cin 3882 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: reseq2i 5877 reseq2d 5880 resabs1 5910 resima2 5915 imaeq2 5954 resdisj 6061 dfpo2 6188 fimadmfoALT 6683 fressnfv 7014 tfrlem1 8178 tfrlem9 8187 tfrlem11 8190 tfrlem12 8191 tfr2b 8198 tz7.44-1 8208 tz7.44-2 8209 tz7.44-3 8210 rdglem1 8217 fnfi 8925 fseqenlem1 9711 rtrclreclem4 14700 psgnprfval1 19045 gsumzaddlem 19437 gsum2dlem2 19487 znunithash 20684 islinds 20926 lmbr2 22318 lmff 22360 kgencn2 22616 ptcmpfi 22872 tsmsgsum 23198 tsmsres 23203 tsmsf1o 23204 tsmsxplem1 23212 tsmsxp 23214 ustval 23262 xrge0gsumle 23902 xrge0tsms 23903 lmmbr2 24328 lmcau 24382 limcun 24964 jensen 26043 wilthlem2 26123 wilthlem3 26124 hhssnvt 29528 hhsssh 29532 foresf1o 30751 reldisjun 30843 xrge0tsmsd 31219 gsumle 31252 esumsnf 31932 subfacp1lem3 33044 subfacp1lem5 33046 erdszelem1 33053 erdsze 33064 erdsze2lem2 33066 cvmscbv 33120 cvmshmeo 33133 cvmsss2 33136 eldm3 33634 dfrdg2 33677 bj-diagval 35272 mbfresfi 35750 elcoeleqvrels 36635 eleldisjs 36766 eldisjeq 36779 mzpcompact2lem 40489 seff 41816 wessf1ornlem 42611 fouriersw 43662 sge0tsms 43808 sge0f1o 43810 sge0sup 43819 meadjuni 43885 ismeannd 43895 psmeasurelem 43898 psmeasure 43899 omeunile 43933 isomennd 43959 hoidmvlelem3 44025 |
Copyright terms: Public domain | W3C validator |