![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5714 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 4241 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 5712 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 5712 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ∩ cin 3975 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 df-opab 5229 df-xp 5706 df-res 5712 |
This theorem is referenced by: reseq2i 6006 reseq2d 6009 resabs1 6036 resima2 6045 reldisjun 6061 imaeq2 6085 resdisj 6200 dfpo2 6327 fimadmfoALT 6845 fressnfv 7194 tfrlem1 8432 tfrlem9 8441 tfrlem11 8444 tfrlem12 8445 tfr2b 8452 tz7.44-1 8462 tz7.44-2 8463 tz7.44-3 8464 rdglem1 8471 fnfi 9244 fseqenlem1 10093 rtrclreclem4 15110 psgnprfval1 19564 gsumzaddlem 19963 gsum2dlem2 20013 znunithash 21606 islinds 21852 lmbr2 23288 lmff 23330 kgencn2 23586 ptcmpfi 23842 tsmsgsum 24168 tsmsres 24173 tsmsf1o 24174 tsmsxplem1 24182 tsmsxp 24184 ustval 24232 xrge0gsumle 24874 xrge0tsms 24875 lmmbr2 25312 lmcau 25366 limcun 25950 jensen 27050 wilthlem2 27130 wilthlem3 27131 hhssnvt 31297 hhsssh 31301 foresf1o 32532 xrge0tsmsd 33041 gsumle 33074 rprmdvdsprod 33527 esumsnf 34028 subfacp1lem3 35150 subfacp1lem5 35152 erdszelem1 35159 erdsze 35170 erdsze2lem2 35172 cvmscbv 35226 cvmshmeo 35239 cvmsss2 35242 eldm3 35723 dfrdg2 35759 bj-diagval 37140 mbfresfi 37626 disjresin 38195 elcoeleqvrels 38551 eleldisjs 38684 eldisjeq 38697 eqvrelqseqdisj3 38787 mzpcompact2lem 42707 seff 44278 wessf1ornlem 45092 fouriersw 46152 sge0tsms 46301 sge0f1o 46303 sge0sup 46312 meadjuni 46378 ismeannd 46388 psmeasurelem 46391 psmeasure 46392 omeunile 46426 isomennd 46452 hoidmvlelem3 46518 |
Copyright terms: Public domain | W3C validator |