| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5668 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4195 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5666 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5666 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3459 ∩ cin 3925 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-in 3933 df-opab 5182 df-xp 5660 df-res 5666 |
| This theorem is referenced by: reseq2i 5963 reseq2d 5966 resabs1 5993 resima2 6003 reldisjun 6019 imaeq2 6043 resdisj 6158 dfpo2 6285 fimadmfoALT 6801 fressnfv 7150 tfrlem1 8390 tfrlem9 8399 tfrlem11 8402 tfrlem12 8403 tfr2b 8410 tz7.44-1 8420 tz7.44-2 8421 tz7.44-3 8422 rdglem1 8429 fnfi 9192 fseqenlem1 10038 rtrclreclem4 15080 psgnprfval1 19503 gsumzaddlem 19902 gsum2dlem2 19952 znunithash 21525 islinds 21769 lmbr2 23197 lmff 23239 kgencn2 23495 ptcmpfi 23751 tsmsgsum 24077 tsmsres 24082 tsmsf1o 24083 tsmsxplem1 24091 tsmsxp 24093 ustval 24141 xrge0gsumle 24773 xrge0tsms 24774 lmmbr2 25211 lmcau 25265 limcun 25848 jensen 26951 wilthlem2 27031 wilthlem3 27032 hhssnvt 31246 hhsssh 31250 foresf1o 32485 xrge0tsmsd 33056 gsumle 33092 rprmdvdsprod 33549 esumsnf 34095 subfacp1lem3 35204 subfacp1lem5 35206 erdszelem1 35213 erdsze 35224 erdsze2lem2 35226 cvmscbv 35280 cvmshmeo 35293 cvmsss2 35296 eldm3 35778 dfrdg2 35813 bj-diagval 37192 mbfresfi 37690 disjresin 38258 elcoeleqvrels 38613 eleldisjs 38746 eldisjeq 38759 eqvrelqseqdisj3 38849 mzpcompact2lem 42774 seff 44333 wessf1ornlem 45209 fouriersw 46260 sge0tsms 46409 sge0f1o 46411 sge0sup 46420 meadjuni 46486 ismeannd 46496 psmeasurelem 46499 psmeasure 46500 omeunile 46534 isomennd 46560 hoidmvlelem3 46626 |
| Copyright terms: Public domain | W3C validator |