![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5691 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 4213 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 5689 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 5689 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Vcvv 3475 ∩ cin 3948 × cxp 5675 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-in 3956 df-opab 5212 df-xp 5683 df-res 5689 |
This theorem is referenced by: reseq2i 5979 reseq2d 5982 resabs1 6012 resima2 6017 reldisjun 6033 imaeq2 6056 resdisj 6169 dfpo2 6296 fimadmfoALT 6817 fressnfv 7158 tfrlem1 8376 tfrlem9 8385 tfrlem11 8388 tfrlem12 8389 tfr2b 8396 tz7.44-1 8406 tz7.44-2 8407 tz7.44-3 8408 rdglem1 8415 fnfi 9181 fseqenlem1 10019 rtrclreclem4 15008 psgnprfval1 19390 gsumzaddlem 19789 gsum2dlem2 19839 znunithash 21120 islinds 21364 lmbr2 22763 lmff 22805 kgencn2 23061 ptcmpfi 23317 tsmsgsum 23643 tsmsres 23648 tsmsf1o 23649 tsmsxplem1 23657 tsmsxp 23659 ustval 23707 xrge0gsumle 24349 xrge0tsms 24350 lmmbr2 24776 lmcau 24830 limcun 25412 jensen 26493 wilthlem2 26573 wilthlem3 26574 hhssnvt 30518 hhsssh 30522 foresf1o 31742 xrge0tsmsd 32209 gsumle 32242 esumsnf 33062 subfacp1lem3 34173 subfacp1lem5 34175 erdszelem1 34182 erdsze 34193 erdsze2lem2 34195 cvmscbv 34249 cvmshmeo 34262 cvmsss2 34265 eldm3 34731 dfrdg2 34767 bj-diagval 36055 mbfresfi 36534 disjresin 37106 elcoeleqvrels 37465 eleldisjs 37598 eldisjeq 37611 eqvrelqseqdisj3 37701 mzpcompact2lem 41489 seff 43068 wessf1ornlem 43882 fouriersw 44947 sge0tsms 45096 sge0f1o 45098 sge0sup 45107 meadjuni 45173 ismeannd 45183 psmeasurelem 45186 psmeasure 45187 omeunile 45221 isomennd 45247 hoidmvlelem3 45313 |
Copyright terms: Public domain | W3C validator |