| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5652 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4183 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5650 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5650 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3447 ∩ cin 3913 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: reseq2i 5947 reseq2d 5950 resabs1 5977 resima2 5987 reldisjun 6003 imaeq2 6027 resdisj 6142 dfpo2 6269 fimadmfoALT 6783 fressnfv 7132 tfrlem1 8344 tfrlem9 8353 tfrlem11 8356 tfrlem12 8357 tfr2b 8364 tz7.44-1 8374 tz7.44-2 8375 tz7.44-3 8376 rdglem1 8383 fnfi 9142 fseqenlem1 9977 rtrclreclem4 15027 psgnprfval1 19452 gsumzaddlem 19851 gsum2dlem2 19901 znunithash 21474 islinds 21718 lmbr2 23146 lmff 23188 kgencn2 23444 ptcmpfi 23700 tsmsgsum 24026 tsmsres 24031 tsmsf1o 24032 tsmsxplem1 24040 tsmsxp 24042 ustval 24090 xrge0gsumle 24722 xrge0tsms 24723 lmmbr2 25159 lmcau 25213 limcun 25796 jensen 26899 wilthlem2 26979 wilthlem3 26980 hhssnvt 31194 hhsssh 31198 foresf1o 32433 xrge0tsmsd 33002 gsumle 33038 rprmdvdsprod 33505 esumsnf 34054 subfacp1lem3 35169 subfacp1lem5 35171 erdszelem1 35178 erdsze 35189 erdsze2lem2 35191 cvmscbv 35245 cvmshmeo 35258 cvmsss2 35261 eldm3 35748 dfrdg2 35783 bj-diagval 37162 mbfresfi 37660 disjresin 38228 elcoeleqvrels 38586 eleldisjs 38720 eldisjeq 38733 eqvrelqseqdisj3 38823 mzpcompact2lem 42739 seff 44298 wessf1ornlem 45179 fouriersw 46229 sge0tsms 46378 sge0f1o 46380 sge0sup 46389 meadjuni 46455 ismeannd 46465 psmeasurelem 46468 psmeasure 46469 omeunile 46503 isomennd 46529 hoidmvlelem3 46595 |
| Copyright terms: Public domain | W3C validator |