![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5360 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
2 | 1 | ineq2d 4043 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
3 | df-res 5358 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
4 | df-res 5358 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
5 | 2, 3, 4 | 3eqtr4g 2886 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 Vcvv 3414 ∩ cin 3797 × cxp 5344 ↾ cres 5348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-in 3805 df-opab 4938 df-xp 5352 df-res 5358 |
This theorem is referenced by: reseq2i 5630 reseq2d 5633 resabs1 5667 resima2 5672 imaeq2 5707 resdisj 5808 fimadmfoALT 6368 fressnfv 6683 tfrlem1 7743 tfrlem9 7752 tfrlem11 7755 tfrlem12 7756 tfr2b 7763 tz7.44-1 7773 tz7.44-2 7774 tz7.44-3 7775 rdglem1 7782 fnfi 8513 fseqenlem1 9167 rtrclreclem4 14185 psgnprfval1 18300 gsumzaddlem 18681 gsum2dlem2 18730 znunithash 20279 islinds 20522 lmbr2 21441 lmff 21483 kgencn2 21738 ptcmpfi 21994 tsmsgsum 22319 tsmsres 22324 tsmsf1o 22325 tsmsxplem1 22333 tsmsxp 22335 ustval 22383 xrge0gsumle 23013 xrge0tsms 23014 lmmbr2 23434 lmcau 23488 limcun 24065 jensen 25135 wilthlem2 25215 wilthlem3 25216 hhssnvt 28673 hhsssh 28677 foresf1o 29887 gsumle 30320 xrge0tsmsd 30326 esumsnf 30667 subfacp1lem3 31706 subfacp1lem5 31708 erdszelem1 31715 erdsze 31726 erdsze2lem2 31728 cvmscbv 31782 cvmshmeo 31795 cvmsss2 31798 dfpo2 32183 eldm3 32189 dfrdg2 32234 mbfresfi 33998 mzpcompact2lem 38157 seff 39347 wessf1ornlem 40178 fouriersw 41240 sge0tsms 41386 sge0f1o 41388 sge0sup 41397 meadjuni 41463 ismeannd 41473 psmeasurelem 41476 psmeasure 41477 omeunile 41511 isomennd 41537 hoidmvlelem3 41603 |
Copyright terms: Public domain | W3C validator |