| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reseq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.) |
| Ref | Expression |
|---|---|
| reseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5645 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 × V) = (𝐵 × V)) | |
| 2 | 1 | ineq2d 4179 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ (𝐴 × V)) = (𝐶 ∩ (𝐵 × V))) |
| 3 | df-res 5643 | . 2 ⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) | |
| 4 | df-res 5643 | . 2 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3444 ∩ cin 3910 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 df-opab 5165 df-xp 5637 df-res 5643 |
| This theorem is referenced by: reseq2i 5936 reseq2d 5939 resabs1 5966 resima2 5976 reldisjun 5992 imaeq2 6016 resdisj 6130 dfpo2 6257 fimadmfoALT 6765 fressnfv 7114 tfrlem1 8321 tfrlem9 8330 tfrlem11 8333 tfrlem12 8334 tfr2b 8341 tz7.44-1 8351 tz7.44-2 8352 tz7.44-3 8353 rdglem1 8360 fnfi 9119 fseqenlem1 9953 rtrclreclem4 15003 psgnprfval1 19428 gsumzaddlem 19827 gsum2dlem2 19877 znunithash 21450 islinds 21694 lmbr2 23122 lmff 23164 kgencn2 23420 ptcmpfi 23676 tsmsgsum 24002 tsmsres 24007 tsmsf1o 24008 tsmsxplem1 24016 tsmsxp 24018 ustval 24066 xrge0gsumle 24698 xrge0tsms 24699 lmmbr2 25135 lmcau 25189 limcun 25772 jensen 26875 wilthlem2 26955 wilthlem3 26956 hhssnvt 31167 hhsssh 31171 foresf1o 32406 xrge0tsmsd 32975 gsumle 33011 rprmdvdsprod 33478 esumsnf 34027 subfacp1lem3 35142 subfacp1lem5 35144 erdszelem1 35151 erdsze 35162 erdsze2lem2 35164 cvmscbv 35218 cvmshmeo 35231 cvmsss2 35234 eldm3 35721 dfrdg2 35756 bj-diagval 37135 mbfresfi 37633 disjresin 38201 elcoeleqvrels 38559 eleldisjs 38693 eldisjeq 38706 eqvrelqseqdisj3 38796 mzpcompact2lem 42712 seff 44271 wessf1ornlem 45152 fouriersw 46202 sge0tsms 46351 sge0f1o 46353 sge0sup 46362 meadjuni 46428 ismeannd 46438 psmeasurelem 46441 psmeasure 46442 omeunile 46476 isomennd 46502 hoidmvlelem3 46568 |
| Copyright terms: Public domain | W3C validator |