![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oenord1ex | Structured version Visualization version GIF version |
Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
Ref | Expression |
---|---|
oenord1ex | ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2oex 8483 | . . . . 5 ⊢ 2o ∈ V | |
2 | 1 | tpid3 4777 | . . . 4 ⊢ 2o ∈ {∅, 1o, 2o} |
3 | df3o2 42529 | . . . 4 ⊢ 3o = {∅, 1o, 2o} | |
4 | 2, 3 | eleqtrri 2831 | . . 3 ⊢ 2o ∈ 3o |
5 | ordom 7869 | . . . 4 ⊢ Ord ω | |
6 | ordirr 6382 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
7 | 2onn 8647 | . . . . . . 7 ⊢ 2o ∈ ω | |
8 | 1oex 8482 | . . . . . . . . 9 ⊢ 1o ∈ V | |
9 | 8 | prid2 4767 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
10 | df2o3 8480 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
11 | 9, 10 | eleqtrri 2831 | . . . . . . 7 ⊢ 1o ∈ 2o |
12 | nnoeomeqom 42528 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ 1o ∈ 2o) → (2o ↑o ω) = ω) | |
13 | 7, 11, 12 | mp2an 689 | . . . . . 6 ⊢ (2o ↑o ω) = ω |
14 | 3onn 8649 | . . . . . . 7 ⊢ 3o ∈ ω | |
15 | 8 | tpid2 4774 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o, 2o} |
16 | 15, 3 | eleqtrri 2831 | . . . . . . 7 ⊢ 1o ∈ 3o |
17 | nnoeomeqom 42528 | . . . . . . 7 ⊢ ((3o ∈ ω ∧ 1o ∈ 3o) → (3o ↑o ω) = ω) | |
18 | 14, 16, 17 | mp2an 689 | . . . . . 6 ⊢ (3o ↑o ω) = ω |
19 | 13, 18 | eleq12i 2825 | . . . . 5 ⊢ ((2o ↑o ω) ∈ (3o ↑o ω) ↔ ω ∈ ω) |
20 | 6, 19 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
21 | 5, 20 | ax-mp 5 | . . 3 ⊢ ¬ (2o ↑o ω) ∈ (3o ↑o ω) |
22 | 4, 21 | 2th 264 | . 2 ⊢ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
23 | xor3 382 | . 2 ⊢ (¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) ↔ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω))) | |
24 | 22, 23 | mpbir 230 | 1 ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∅c0 4322 {cpr 4630 {ctp 4632 Ord word 6363 (class class class)co 7412 ωcom 7859 1oc1o 8465 2oc2o 8466 3oc3o 8467 ↑o coe 8471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-3o 8474 df-oadd 8476 df-omul 8477 df-oexp 8478 |
This theorem is referenced by: oenord1 42532 |
Copyright terms: Public domain | W3C validator |