Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1ex Structured version   Visualization version   GIF version

Theorem oenord1ex 43290
Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenord1ex ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))

Proof of Theorem oenord1ex
StepHypRef Expression
1 2oex 8499 . . . . 5 2o ∈ V
21tpid3 4753 . . . 4 2o ∈ {∅, 1o, 2o}
3 df3o2 43288 . . . 4 3o = {∅, 1o, 2o}
42, 3eleqtrri 2832 . . 3 2o ∈ 3o
5 ordom 7879 . . . 4 Ord ω
6 ordirr 6381 . . . . 5 (Ord ω → ¬ ω ∈ ω)
7 2onn 8662 . . . . . . 7 2o ∈ ω
8 1oex 8498 . . . . . . . . 9 1o ∈ V
98prid2 4743 . . . . . . . 8 1o ∈ {∅, 1o}
10 df2o3 8496 . . . . . . . 8 2o = {∅, 1o}
119, 10eleqtrri 2832 . . . . . . 7 1o ∈ 2o
12 nnoeomeqom 43287 . . . . . . 7 ((2o ∈ ω ∧ 1o ∈ 2o) → (2oo ω) = ω)
137, 11, 12mp2an 692 . . . . . 6 (2oo ω) = ω
14 3onn 8664 . . . . . . 7 3o ∈ ω
158tpid2 4750 . . . . . . . 8 1o ∈ {∅, 1o, 2o}
1615, 3eleqtrri 2832 . . . . . . 7 1o ∈ 3o
17 nnoeomeqom 43287 . . . . . . 7 ((3o ∈ ω ∧ 1o ∈ 3o) → (3oo ω) = ω)
1814, 16, 17mp2an 692 . . . . . 6 (3oo ω) = ω
1913, 18eleq12i 2826 . . . . 5 ((2oo ω) ∈ (3oo ω) ↔ ω ∈ ω)
206, 19sylnibr 329 . . . 4 (Ord ω → ¬ (2oo ω) ∈ (3oo ω))
215, 20ax-mp 5 . . 3 ¬ (2oo ω) ∈ (3oo ω)
224, 212th 264 . 2 (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω))
23 xor3 382 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) ↔ (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω)))
2422, 23mpbir 231 1 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wcel 2107  c0 4313  {cpr 4608  {ctp 4610  Ord word 6362  (class class class)co 7413  ωcom 7869  1oc1o 8481  2oc2o 8482  3oc3o 8483  o coe 8487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-3o 8490  df-oadd 8492  df-omul 8493  df-oexp 8494
This theorem is referenced by:  oenord1  43291
  Copyright terms: Public domain W3C validator