| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenord1ex | Structured version Visualization version GIF version | ||
| Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenord1ex | ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8422 | . . . . 5 ⊢ 2o ∈ V | |
| 2 | 1 | tpid3 4733 | . . . 4 ⊢ 2o ∈ {∅, 1o, 2o} |
| 3 | df3o2 43295 | . . . 4 ⊢ 3o = {∅, 1o, 2o} | |
| 4 | 2, 3 | eleqtrri 2827 | . . 3 ⊢ 2o ∈ 3o |
| 5 | ordom 7832 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6338 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | 2onn 8583 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 8 | 1oex 8421 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | prid2 4723 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
| 10 | df2o3 8419 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2827 | . . . . . . 7 ⊢ 1o ∈ 2o |
| 12 | nnoeomeqom 43294 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ 1o ∈ 2o) → (2o ↑o ω) = ω) | |
| 13 | 7, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (2o ↑o ω) = ω |
| 14 | 3onn 8585 | . . . . . . 7 ⊢ 3o ∈ ω | |
| 15 | 8 | tpid2 4730 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o, 2o} |
| 16 | 15, 3 | eleqtrri 2827 | . . . . . . 7 ⊢ 1o ∈ 3o |
| 17 | nnoeomeqom 43294 | . . . . . . 7 ⊢ ((3o ∈ ω ∧ 1o ∈ 3o) → (3o ↑o ω) = ω) | |
| 18 | 14, 16, 17 | mp2an 692 | . . . . . 6 ⊢ (3o ↑o ω) = ω |
| 19 | 13, 18 | eleq12i 2821 | . . . . 5 ⊢ ((2o ↑o ω) ∈ (3o ↑o ω) ↔ ω ∈ ω) |
| 20 | 6, 19 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 21 | 5, 20 | ax-mp 5 | . . 3 ⊢ ¬ (2o ↑o ω) ∈ (3o ↑o ω) |
| 22 | 4, 21 | 2th 264 | . 2 ⊢ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 23 | xor3 382 | . 2 ⊢ (¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) ↔ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω))) | |
| 24 | 22, 23 | mpbir 231 | 1 ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4292 {cpr 4587 {ctp 4589 Ord word 6319 (class class class)co 7369 ωcom 7822 1oc1o 8404 2oc2o 8405 3oc3o 8406 ↑o coe 8410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-3o 8413 df-oadd 8415 df-omul 8416 df-oexp 8417 |
| This theorem is referenced by: oenord1 43298 |
| Copyright terms: Public domain | W3C validator |