| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenord1ex | Structured version Visualization version GIF version | ||
| Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenord1ex | ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8491 | . . . . 5 ⊢ 2o ∈ V | |
| 2 | 1 | tpid3 4749 | . . . 4 ⊢ 2o ∈ {∅, 1o, 2o} |
| 3 | df3o2 43337 | . . . 4 ⊢ 3o = {∅, 1o, 2o} | |
| 4 | 2, 3 | eleqtrri 2833 | . . 3 ⊢ 2o ∈ 3o |
| 5 | ordom 7871 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6370 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | 2onn 8654 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 8 | 1oex 8490 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | prid2 4739 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
| 10 | df2o3 8488 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2833 | . . . . . . 7 ⊢ 1o ∈ 2o |
| 12 | nnoeomeqom 43336 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ 1o ∈ 2o) → (2o ↑o ω) = ω) | |
| 13 | 7, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (2o ↑o ω) = ω |
| 14 | 3onn 8656 | . . . . . . 7 ⊢ 3o ∈ ω | |
| 15 | 8 | tpid2 4746 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o, 2o} |
| 16 | 15, 3 | eleqtrri 2833 | . . . . . . 7 ⊢ 1o ∈ 3o |
| 17 | nnoeomeqom 43336 | . . . . . . 7 ⊢ ((3o ∈ ω ∧ 1o ∈ 3o) → (3o ↑o ω) = ω) | |
| 18 | 14, 16, 17 | mp2an 692 | . . . . . 6 ⊢ (3o ↑o ω) = ω |
| 19 | 13, 18 | eleq12i 2827 | . . . . 5 ⊢ ((2o ↑o ω) ∈ (3o ↑o ω) ↔ ω ∈ ω) |
| 20 | 6, 19 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 21 | 5, 20 | ax-mp 5 | . . 3 ⊢ ¬ (2o ↑o ω) ∈ (3o ↑o ω) |
| 22 | 4, 21 | 2th 264 | . 2 ⊢ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 23 | xor3 382 | . 2 ⊢ (¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) ↔ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω))) | |
| 24 | 22, 23 | mpbir 231 | 1 ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∅c0 4308 {cpr 4603 {ctp 4605 Ord word 6351 (class class class)co 7405 ωcom 7861 1oc1o 8473 2oc2o 8474 3oc3o 8475 ↑o coe 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-3o 8482 df-oadd 8484 df-omul 8485 df-oexp 8486 |
| This theorem is referenced by: oenord1 43340 |
| Copyright terms: Public domain | W3C validator |