Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1ex Structured version   Visualization version   GIF version

Theorem oenord1ex 43311
Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenord1ex ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))

Proof of Theorem oenord1ex
StepHypRef Expression
1 2oex 8448 . . . . 5 2o ∈ V
21tpid3 4740 . . . 4 2o ∈ {∅, 1o, 2o}
3 df3o2 43309 . . . 4 3o = {∅, 1o, 2o}
42, 3eleqtrri 2828 . . 3 2o ∈ 3o
5 ordom 7855 . . . 4 Ord ω
6 ordirr 6353 . . . . 5 (Ord ω → ¬ ω ∈ ω)
7 2onn 8609 . . . . . . 7 2o ∈ ω
8 1oex 8447 . . . . . . . . 9 1o ∈ V
98prid2 4730 . . . . . . . 8 1o ∈ {∅, 1o}
10 df2o3 8445 . . . . . . . 8 2o = {∅, 1o}
119, 10eleqtrri 2828 . . . . . . 7 1o ∈ 2o
12 nnoeomeqom 43308 . . . . . . 7 ((2o ∈ ω ∧ 1o ∈ 2o) → (2oo ω) = ω)
137, 11, 12mp2an 692 . . . . . 6 (2oo ω) = ω
14 3onn 8611 . . . . . . 7 3o ∈ ω
158tpid2 4737 . . . . . . . 8 1o ∈ {∅, 1o, 2o}
1615, 3eleqtrri 2828 . . . . . . 7 1o ∈ 3o
17 nnoeomeqom 43308 . . . . . . 7 ((3o ∈ ω ∧ 1o ∈ 3o) → (3oo ω) = ω)
1814, 16, 17mp2an 692 . . . . . 6 (3oo ω) = ω
1913, 18eleq12i 2822 . . . . 5 ((2oo ω) ∈ (3oo ω) ↔ ω ∈ ω)
206, 19sylnibr 329 . . . 4 (Ord ω → ¬ (2oo ω) ∈ (3oo ω))
215, 20ax-mp 5 . . 3 ¬ (2oo ω) ∈ (3oo ω)
224, 212th 264 . 2 (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω))
23 xor3 382 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) ↔ (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω)))
2422, 23mpbir 231 1 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  c0 4299  {cpr 4594  {ctp 4596  Ord word 6334  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431  3oc3o 8432  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-3o 8439  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by:  oenord1  43312
  Copyright terms: Public domain W3C validator