Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1ex Structured version   Visualization version   GIF version

Theorem oenord1ex 43277
Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenord1ex ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))

Proof of Theorem oenord1ex
StepHypRef Expression
1 2oex 8533 . . . . 5 2o ∈ V
21tpid3 4798 . . . 4 2o ∈ {∅, 1o, 2o}
3 df3o2 43275 . . . 4 3o = {∅, 1o, 2o}
42, 3eleqtrri 2843 . . 3 2o ∈ 3o
5 ordom 7913 . . . 4 Ord ω
6 ordirr 6413 . . . . 5 (Ord ω → ¬ ω ∈ ω)
7 2onn 8698 . . . . . . 7 2o ∈ ω
8 1oex 8532 . . . . . . . . 9 1o ∈ V
98prid2 4788 . . . . . . . 8 1o ∈ {∅, 1o}
10 df2o3 8530 . . . . . . . 8 2o = {∅, 1o}
119, 10eleqtrri 2843 . . . . . . 7 1o ∈ 2o
12 nnoeomeqom 43274 . . . . . . 7 ((2o ∈ ω ∧ 1o ∈ 2o) → (2oo ω) = ω)
137, 11, 12mp2an 691 . . . . . 6 (2oo ω) = ω
14 3onn 8700 . . . . . . 7 3o ∈ ω
158tpid2 4795 . . . . . . . 8 1o ∈ {∅, 1o, 2o}
1615, 3eleqtrri 2843 . . . . . . 7 1o ∈ 3o
17 nnoeomeqom 43274 . . . . . . 7 ((3o ∈ ω ∧ 1o ∈ 3o) → (3oo ω) = ω)
1814, 16, 17mp2an 691 . . . . . 6 (3oo ω) = ω
1913, 18eleq12i 2837 . . . . 5 ((2oo ω) ∈ (3oo ω) ↔ ω ∈ ω)
206, 19sylnibr 329 . . . 4 (Ord ω → ¬ (2oo ω) ∈ (3oo ω))
215, 20ax-mp 5 . . 3 ¬ (2oo ω) ∈ (3oo ω)
224, 212th 264 . 2 (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω))
23 xor3 382 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) ↔ (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω)))
2422, 23mpbir 231 1 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  c0 4352  {cpr 4650  {ctp 4652  Ord word 6394  (class class class)co 7448  ωcom 7903  1oc1o 8515  2oc2o 8516  3oc3o 8517  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-3o 8524  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by:  oenord1  43278
  Copyright terms: Public domain W3C validator