Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oenord1ex Structured version   Visualization version   GIF version

Theorem oenord1ex 42520
Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
oenord1ex ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))

Proof of Theorem oenord1ex
StepHypRef Expression
1 2oex 8472 . . . . 5 2o ∈ V
21tpid3 4769 . . . 4 2o ∈ {∅, 1o, 2o}
3 df3o2 42518 . . . 4 3o = {∅, 1o, 2o}
42, 3eleqtrri 2824 . . 3 2o ∈ 3o
5 ordom 7858 . . . 4 Ord ω
6 ordirr 6372 . . . . 5 (Ord ω → ¬ ω ∈ ω)
7 2onn 8636 . . . . . . 7 2o ∈ ω
8 1oex 8471 . . . . . . . . 9 1o ∈ V
98prid2 4759 . . . . . . . 8 1o ∈ {∅, 1o}
10 df2o3 8469 . . . . . . . 8 2o = {∅, 1o}
119, 10eleqtrri 2824 . . . . . . 7 1o ∈ 2o
12 nnoeomeqom 42517 . . . . . . 7 ((2o ∈ ω ∧ 1o ∈ 2o) → (2oo ω) = ω)
137, 11, 12mp2an 689 . . . . . 6 (2oo ω) = ω
14 3onn 8638 . . . . . . 7 3o ∈ ω
158tpid2 4766 . . . . . . . 8 1o ∈ {∅, 1o, 2o}
1615, 3eleqtrri 2824 . . . . . . 7 1o ∈ 3o
17 nnoeomeqom 42517 . . . . . . 7 ((3o ∈ ω ∧ 1o ∈ 3o) → (3oo ω) = ω)
1814, 16, 17mp2an 689 . . . . . 6 (3oo ω) = ω
1913, 18eleq12i 2818 . . . . 5 ((2oo ω) ∈ (3oo ω) ↔ ω ∈ ω)
206, 19sylnibr 329 . . . 4 (Ord ω → ¬ (2oo ω) ∈ (3oo ω))
215, 20ax-mp 5 . . 3 ¬ (2oo ω) ∈ (3oo ω)
224, 212th 264 . 2 (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω))
23 xor3 382 . 2 (¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω)) ↔ (2o ∈ 3o ↔ ¬ (2oo ω) ∈ (3oo ω)))
2422, 23mpbir 230 1 ¬ (2o ∈ 3o ↔ (2oo ω) ∈ (3oo ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  c0 4314  {cpr 4622  {ctp 4624  Ord word 6353  (class class class)co 7401  ωcom 7848  1oc1o 8454  2oc2o 8455  3oc3o 8456  o coe 8460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-3o 8463  df-oadd 8465  df-omul 8466  df-oexp 8467
This theorem is referenced by:  oenord1  42521
  Copyright terms: Public domain W3C validator