| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenord1ex | Structured version Visualization version GIF version | ||
| Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenord1ex | ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8396 | . . . . 5 ⊢ 2o ∈ V | |
| 2 | 1 | tpid3 4723 | . . . 4 ⊢ 2o ∈ {∅, 1o, 2o} |
| 3 | df3o2 43405 | . . . 4 ⊢ 3o = {∅, 1o, 2o} | |
| 4 | 2, 3 | eleqtrri 2830 | . . 3 ⊢ 2o ∈ 3o |
| 5 | ordom 7806 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6324 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | 2onn 8557 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 8 | 1oex 8395 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | prid2 4713 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
| 10 | df2o3 8393 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2830 | . . . . . . 7 ⊢ 1o ∈ 2o |
| 12 | nnoeomeqom 43404 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ 1o ∈ 2o) → (2o ↑o ω) = ω) | |
| 13 | 7, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (2o ↑o ω) = ω |
| 14 | 3onn 8559 | . . . . . . 7 ⊢ 3o ∈ ω | |
| 15 | 8 | tpid2 4720 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o, 2o} |
| 16 | 15, 3 | eleqtrri 2830 | . . . . . . 7 ⊢ 1o ∈ 3o |
| 17 | nnoeomeqom 43404 | . . . . . . 7 ⊢ ((3o ∈ ω ∧ 1o ∈ 3o) → (3o ↑o ω) = ω) | |
| 18 | 14, 16, 17 | mp2an 692 | . . . . . 6 ⊢ (3o ↑o ω) = ω |
| 19 | 13, 18 | eleq12i 2824 | . . . . 5 ⊢ ((2o ↑o ω) ∈ (3o ↑o ω) ↔ ω ∈ ω) |
| 20 | 6, 19 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 21 | 5, 20 | ax-mp 5 | . . 3 ⊢ ¬ (2o ↑o ω) ∈ (3o ↑o ω) |
| 22 | 4, 21 | 2th 264 | . 2 ⊢ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 23 | xor3 382 | . 2 ⊢ (¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) ↔ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω))) | |
| 24 | 22, 23 | mpbir 231 | 1 ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∅c0 4280 {cpr 4575 {ctp 4577 Ord word 6305 (class class class)co 7346 ωcom 7796 1oc1o 8378 2oc2o 8379 3oc3o 8380 ↑o coe 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-3o 8387 df-oadd 8389 df-omul 8390 df-oexp 8391 |
| This theorem is referenced by: oenord1 43408 |
| Copyright terms: Public domain | W3C validator |