| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oenord1ex | Structured version Visualization version GIF version | ||
| Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| oenord1ex | ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2oex 8499 | . . . . 5 ⊢ 2o ∈ V | |
| 2 | 1 | tpid3 4753 | . . . 4 ⊢ 2o ∈ {∅, 1o, 2o} |
| 3 | df3o2 43288 | . . . 4 ⊢ 3o = {∅, 1o, 2o} | |
| 4 | 2, 3 | eleqtrri 2832 | . . 3 ⊢ 2o ∈ 3o |
| 5 | ordom 7879 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6381 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | 2onn 8662 | . . . . . . 7 ⊢ 2o ∈ ω | |
| 8 | 1oex 8498 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 9 | 8 | prid2 4743 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
| 10 | df2o3 8496 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 11 | 9, 10 | eleqtrri 2832 | . . . . . . 7 ⊢ 1o ∈ 2o |
| 12 | nnoeomeqom 43287 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ 1o ∈ 2o) → (2o ↑o ω) = ω) | |
| 13 | 7, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (2o ↑o ω) = ω |
| 14 | 3onn 8664 | . . . . . . 7 ⊢ 3o ∈ ω | |
| 15 | 8 | tpid2 4750 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o, 2o} |
| 16 | 15, 3 | eleqtrri 2832 | . . . . . . 7 ⊢ 1o ∈ 3o |
| 17 | nnoeomeqom 43287 | . . . . . . 7 ⊢ ((3o ∈ ω ∧ 1o ∈ 3o) → (3o ↑o ω) = ω) | |
| 18 | 14, 16, 17 | mp2an 692 | . . . . . 6 ⊢ (3o ↑o ω) = ω |
| 19 | 13, 18 | eleq12i 2826 | . . . . 5 ⊢ ((2o ↑o ω) ∈ (3o ↑o ω) ↔ ω ∈ ω) |
| 20 | 6, 19 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 21 | 5, 20 | ax-mp 5 | . . 3 ⊢ ¬ (2o ↑o ω) ∈ (3o ↑o ω) |
| 22 | 4, 21 | 2th 264 | . 2 ⊢ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
| 23 | xor3 382 | . 2 ⊢ (¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) ↔ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω))) | |
| 24 | 22, 23 | mpbir 231 | 1 ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∅c0 4313 {cpr 4608 {ctp 4610 Ord word 6362 (class class class)co 7413 ωcom 7869 1oc1o 8481 2oc2o 8482 3oc3o 8483 ↑o coe 8487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-3o 8490 df-oadd 8492 df-omul 8493 df-oexp 8494 |
| This theorem is referenced by: oenord1 43291 |
| Copyright terms: Public domain | W3C validator |