![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oenord1ex | Structured version Visualization version GIF version |
Description: When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
Ref | Expression |
---|---|
oenord1ex | ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2oex 8533 | . . . . 5 ⊢ 2o ∈ V | |
2 | 1 | tpid3 4798 | . . . 4 ⊢ 2o ∈ {∅, 1o, 2o} |
3 | df3o2 43275 | . . . 4 ⊢ 3o = {∅, 1o, 2o} | |
4 | 2, 3 | eleqtrri 2843 | . . 3 ⊢ 2o ∈ 3o |
5 | ordom 7913 | . . . 4 ⊢ Ord ω | |
6 | ordirr 6413 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
7 | 2onn 8698 | . . . . . . 7 ⊢ 2o ∈ ω | |
8 | 1oex 8532 | . . . . . . . . 9 ⊢ 1o ∈ V | |
9 | 8 | prid2 4788 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
10 | df2o3 8530 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
11 | 9, 10 | eleqtrri 2843 | . . . . . . 7 ⊢ 1o ∈ 2o |
12 | nnoeomeqom 43274 | . . . . . . 7 ⊢ ((2o ∈ ω ∧ 1o ∈ 2o) → (2o ↑o ω) = ω) | |
13 | 7, 11, 12 | mp2an 691 | . . . . . 6 ⊢ (2o ↑o ω) = ω |
14 | 3onn 8700 | . . . . . . 7 ⊢ 3o ∈ ω | |
15 | 8 | tpid2 4795 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o, 2o} |
16 | 15, 3 | eleqtrri 2843 | . . . . . . 7 ⊢ 1o ∈ 3o |
17 | nnoeomeqom 43274 | . . . . . . 7 ⊢ ((3o ∈ ω ∧ 1o ∈ 3o) → (3o ↑o ω) = ω) | |
18 | 14, 16, 17 | mp2an 691 | . . . . . 6 ⊢ (3o ↑o ω) = ω |
19 | 13, 18 | eleq12i 2837 | . . . . 5 ⊢ ((2o ↑o ω) ∈ (3o ↑o ω) ↔ ω ∈ ω) |
20 | 6, 19 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
21 | 5, 20 | ax-mp 5 | . . 3 ⊢ ¬ (2o ↑o ω) ∈ (3o ↑o ω) |
22 | 4, 21 | 2th 264 | . 2 ⊢ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω)) |
23 | xor3 382 | . 2 ⊢ (¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) ↔ (2o ∈ 3o ↔ ¬ (2o ↑o ω) ∈ (3o ↑o ω))) | |
24 | 22, 23 | mpbir 231 | 1 ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∅c0 4352 {cpr 4650 {ctp 4652 Ord word 6394 (class class class)co 7448 ωcom 7903 1oc1o 8515 2oc2o 8516 3oc3o 8517 ↑o coe 8521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-3o 8524 df-oadd 8526 df-omul 8527 df-oexp 8528 |
This theorem is referenced by: oenord1 43278 |
Copyright terms: Public domain | W3C validator |