Step | Hyp | Ref
| Expression |
1 | | opelxp 5616 |
. . 3
⊢
(〈〈𝐷,
𝐻〉, 𝐴〉 ∈ (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (〈𝐷, 𝐻〉 ∈ ({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴 ∈ 𝐸)) |
2 | | opelxp 5616 |
. . . . 5
⊢
(〈𝐷, 𝐻〉 ∈ ({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin))) |
3 | | cnveq 5771 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ◡𝑑 = ◡𝐷) |
4 | | id 22 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → 𝑑 = 𝐷) |
5 | 3, 4 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → (◡𝑑 = 𝑑 ↔ ◡𝐷 = 𝐷)) |
6 | 5 | elrab 3617 |
. . . . . . 7
⊢ (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} ↔ (𝐷 ∈ 𝒫 𝑉 ∧ ◡𝐷 = 𝐷)) |
7 | | mpstval.v |
. . . . . . . . . 10
⊢ 𝑉 = (mDV‘𝑇) |
8 | 7 | fvexi 6770 |
. . . . . . . . 9
⊢ 𝑉 ∈ V |
9 | 8 | elpw2 5264 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝒫 𝑉 ↔ 𝐷 ⊆ 𝑉) |
10 | 9 | anbi1i 623 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝒫 𝑉 ∧ ◡𝐷 = 𝐷) ↔ (𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷)) |
11 | 6, 10 | bitri 274 |
. . . . . 6
⊢ (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} ↔ (𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷)) |
12 | | elfpw 9051 |
. . . . . 6
⊢ (𝐻 ∈ (𝒫 𝐸 ∩ Fin) ↔ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin)) |
13 | 11, 12 | anbi12i 626 |
. . . . 5
⊢ ((𝐷 ∈ {𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin))) |
14 | 2, 13 | bitri 274 |
. . . 4
⊢
(〈𝐷, 𝐻〉 ∈ ({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin))) |
15 | 14 | anbi1i 623 |
. . 3
⊢
((〈𝐷, 𝐻〉 ∈ ({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴 ∈ 𝐸) ↔ (((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin)) ∧ 𝐴 ∈ 𝐸)) |
16 | 1, 15 | bitri 274 |
. 2
⊢
(〈〈𝐷,
𝐻〉, 𝐴〉 ∈ (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin)) ∧ 𝐴 ∈ 𝐸)) |
17 | | df-ot 4567 |
. . 3
⊢
〈𝐷, 𝐻, 𝐴〉 = 〈〈𝐷, 𝐻〉, 𝐴〉 |
18 | | mpstval.e |
. . . 4
⊢ 𝐸 = (mEx‘𝑇) |
19 | | mpstval.p |
. . . 4
⊢ 𝑃 = (mPreSt‘𝑇) |
20 | 7, 18, 19 | mpstval 33397 |
. . 3
⊢ 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) |
21 | 17, 20 | eleq12i 2831 |
. 2
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ↔ 〈〈𝐷, 𝐻〉, 𝐴〉 ∈ (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)) |
22 | | df-3an 1087 |
. 2
⊢ (((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ 𝐸) ↔ (((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin)) ∧ 𝐴 ∈ 𝐸)) |
23 | 16, 21, 22 | 3bitr4i 302 |
1
⊢
(〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ 𝐸)) |