Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpst Structured version   Visualization version   GIF version

Theorem elmpst 35508
Description: Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v 𝑉 = (mDV‘𝑇)
mpstval.e 𝐸 = (mEx‘𝑇)
mpstval.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
elmpst (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸))

Proof of Theorem elmpst
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 opelxp 5659 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴𝐸))
2 opelxp 5659 . . . . 5 (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)))
3 cnveq 5820 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
4 id 22 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
53, 4eqeq12d 2745 . . . . . . . 8 (𝑑 = 𝐷 → (𝑑 = 𝑑𝐷 = 𝐷))
65elrab 3650 . . . . . . 7 (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ↔ (𝐷 ∈ 𝒫 𝑉𝐷 = 𝐷))
7 mpstval.v . . . . . . . . . 10 𝑉 = (mDV‘𝑇)
87fvexi 6840 . . . . . . . . 9 𝑉 ∈ V
98elpw2 5276 . . . . . . . 8 (𝐷 ∈ 𝒫 𝑉𝐷𝑉)
109anbi1i 624 . . . . . . 7 ((𝐷 ∈ 𝒫 𝑉𝐷 = 𝐷) ↔ (𝐷𝑉𝐷 = 𝐷))
116, 10bitri 275 . . . . . 6 (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ↔ (𝐷𝑉𝐷 = 𝐷))
12 elfpw 9263 . . . . . 6 (𝐻 ∈ (𝒫 𝐸 ∩ Fin) ↔ (𝐻𝐸𝐻 ∈ Fin))
1311, 12anbi12i 628 . . . . 5 ((𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)))
142, 13bitri 275 . . . 4 (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)))
1514anbi1i 624 . . 3 ((⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
161, 15bitri 275 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
17 df-ot 4588 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
18 mpstval.e . . . 4 𝐸 = (mEx‘𝑇)
19 mpstval.p . . . 4 𝑃 = (mPreSt‘𝑇)
207, 18, 19mpstval 35507 . . 3 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
2117, 20eleq12i 2821 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
22 df-3an 1088 . 2 (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
2316, 21, 223bitr4i 303 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  cin 3904  wss 3905  𝒫 cpw 4553  cop 4585  cotp 4587   × cxp 5621  ccnv 5622  cfv 6486  Fincfn 8879  mExcmex 35439  mDVcmdv 35440  mPreStcmpst 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-ot 4588  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-mpst 35465
This theorem is referenced by:  msrval  35510  msrf  35514  mclsssvlem  35534  mclsax  35541  mclsind  35542  mthmpps  35554  mclsppslem  35555  mclspps  35556
  Copyright terms: Public domain W3C validator