Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpst Structured version   Visualization version   GIF version

Theorem elmpst 35504
Description: Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v 𝑉 = (mDV‘𝑇)
mpstval.e 𝐸 = (mEx‘𝑇)
mpstval.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
elmpst (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸))

Proof of Theorem elmpst
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 opelxp 5736 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴𝐸))
2 opelxp 5736 . . . . 5 (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)))
3 cnveq 5898 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
4 id 22 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
53, 4eqeq12d 2756 . . . . . . . 8 (𝑑 = 𝐷 → (𝑑 = 𝑑𝐷 = 𝐷))
65elrab 3708 . . . . . . 7 (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ↔ (𝐷 ∈ 𝒫 𝑉𝐷 = 𝐷))
7 mpstval.v . . . . . . . . . 10 𝑉 = (mDV‘𝑇)
87fvexi 6934 . . . . . . . . 9 𝑉 ∈ V
98elpw2 5352 . . . . . . . 8 (𝐷 ∈ 𝒫 𝑉𝐷𝑉)
109anbi1i 623 . . . . . . 7 ((𝐷 ∈ 𝒫 𝑉𝐷 = 𝐷) ↔ (𝐷𝑉𝐷 = 𝐷))
116, 10bitri 275 . . . . . 6 (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ↔ (𝐷𝑉𝐷 = 𝐷))
12 elfpw 9424 . . . . . 6 (𝐻 ∈ (𝒫 𝐸 ∩ Fin) ↔ (𝐻𝐸𝐻 ∈ Fin))
1311, 12anbi12i 627 . . . . 5 ((𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)))
142, 13bitri 275 . . . 4 (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)))
1514anbi1i 623 . . 3 ((⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
161, 15bitri 275 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
17 df-ot 4657 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
18 mpstval.e . . . 4 𝐸 = (mEx‘𝑇)
19 mpstval.p . . . 4 𝑃 = (mPreSt‘𝑇)
207, 18, 19mpstval 35503 . . 3 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
2117, 20eleq12i 2837 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
22 df-3an 1089 . 2 (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
2316, 21, 223bitr4i 303 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  cin 3975  wss 3976  𝒫 cpw 4622  cop 4654  cotp 4656   × cxp 5698  ccnv 5699  cfv 6573  Fincfn 9003  mExcmex 35435  mDVcmdv 35436  mPreStcmpst 35441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-mpst 35461
This theorem is referenced by:  msrval  35506  msrf  35510  mclsssvlem  35530  mclsax  35537  mclsind  35538  mthmpps  35550  mclsppslem  35551  mclspps  35552
  Copyright terms: Public domain W3C validator