Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpst Structured version   Visualization version   GIF version

Theorem elmpst 33526
Description: Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mpstval.v 𝑉 = (mDV‘𝑇)
mpstval.e 𝐸 = (mEx‘𝑇)
mpstval.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
elmpst (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸))

Proof of Theorem elmpst
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 opelxp 5627 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴𝐸))
2 opelxp 5627 . . . . 5 (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)))
3 cnveq 5786 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
4 id 22 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
53, 4eqeq12d 2749 . . . . . . . 8 (𝑑 = 𝐷 → (𝑑 = 𝑑𝐷 = 𝐷))
65elrab 3626 . . . . . . 7 (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ↔ (𝐷 ∈ 𝒫 𝑉𝐷 = 𝐷))
7 mpstval.v . . . . . . . . . 10 𝑉 = (mDV‘𝑇)
87fvexi 6806 . . . . . . . . 9 𝑉 ∈ V
98elpw2 5272 . . . . . . . 8 (𝐷 ∈ 𝒫 𝑉𝐷𝑉)
109anbi1i 623 . . . . . . 7 ((𝐷 ∈ 𝒫 𝑉𝐷 = 𝐷) ↔ (𝐷𝑉𝐷 = 𝐷))
116, 10bitri 274 . . . . . 6 (𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ↔ (𝐷𝑉𝐷 = 𝐷))
12 elfpw 9149 . . . . . 6 (𝐻 ∈ (𝒫 𝐸 ∩ Fin) ↔ (𝐻𝐸𝐻 ∈ Fin))
1311, 12anbi12i 626 . . . . 5 ((𝐷 ∈ {𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} ∧ 𝐻 ∈ (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)))
142, 13bitri 274 . . . 4 (⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)))
1514anbi1i 623 . . 3 ((⟨𝐷, 𝐻⟩ ∈ ({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) ∧ 𝐴𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
161, 15bitri 274 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
17 df-ot 4573 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
18 mpstval.e . . . 4 𝐸 = (mEx‘𝑇)
19 mpstval.p . . . 4 𝑃 = (mPreSt‘𝑇)
207, 18, 19mpstval 33525 . . 3 𝑃 = (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸)
2117, 20eleq12i 2826 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ (({𝑑 ∈ 𝒫 𝑉𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸))
22 df-3an 1087 . 2 (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸) ↔ (((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin)) ∧ 𝐴𝐸))
2316, 21, 223bitr4i 302 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷𝑉𝐷 = 𝐷) ∧ (𝐻𝐸𝐻 ∈ Fin) ∧ 𝐴𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1537  wcel 2101  {crab 3221  cin 3888  wss 3889  𝒫 cpw 4536  cop 4570  cotp 4572   × cxp 5589  ccnv 5590  cfv 6447  Fincfn 8753  mExcmex 33457  mDVcmdv 33458  mPreStcmpst 33463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-ot 4573  df-uni 4842  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-iota 6399  df-fun 6449  df-fv 6455  df-mpst 33483
This theorem is referenced by:  msrval  33528  msrf  33532  mclsssvlem  33552  mclsax  33559  mclsind  33560  mthmpps  33572  mclsppslem  33573  mclspps  33574
  Copyright terms: Public domain W3C validator