Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpps Structured version   Visualization version   GIF version

Theorem elmpps 35558
Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
mppsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
elmpps (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))

Proof of Theorem elmpps
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ot 4640 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
2 mppsval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 mppsval.j . . . 4 𝐽 = (mPPSt‘𝑇)
4 mppsval.c . . . 4 𝐶 = (mCls‘𝑇)
52, 3, 4mppsval 35557 . . 3 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))}
61, 5eleq12i 2832 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))})
7 oprabss 7540 . . . 4 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ⊆ ((V × V) × V)
87sseli 3991 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
92mpstssv 35524 . . . . . 6 𝑃 ⊆ ((V × V) × V)
109sseli 3991 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ((V × V) × V))
111, 10eqeltrrid 2844 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
1211adantr 480 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)) → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
13 opelxp 5725 . . . 4 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V))
14 opelxp 5725 . . . . 5 (⟨𝐷, 𝐻⟩ ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V))
15 simp1 1135 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → 𝑑 = 𝐷)
16 simp2 1136 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → = 𝐻)
17 simp3 1137 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → 𝑎 = 𝐴)
1815, 16, 17oteq123d 4893 . . . . . . . . 9 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → ⟨𝑑, , 𝑎⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1918eleq1d 2824 . . . . . . . 8 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (⟨𝑑, , 𝑎⟩ ∈ 𝑃 ↔ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃))
2015, 16oveq12d 7449 . . . . . . . . 9 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (𝑑𝐶) = (𝐷𝐶𝐻))
2117, 20eleq12d 2833 . . . . . . . 8 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (𝑎 ∈ (𝑑𝐶) ↔ 𝐴 ∈ (𝐷𝐶𝐻)))
2219, 21anbi12d 632 . . . . . . 7 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → ((⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)) ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2322eloprabga 7541 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
24233expa 1117 . . . . 5 (((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2514, 24sylanb 581 . . . 4 ((⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2613, 25sylbi 217 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
278, 12, 26pm5.21nii 378 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))
286, 27bitri 275 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cop 4637  cotp 4639   × cxp 5687  cfv 6563  (class class class)co 7431  {coprab 7432  mPreStcmpst 35458  mClscmcls 35462  mPPStcmpps 35463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpst 35478  df-mpps 35483
This theorem is referenced by:  mthmpps  35567  mclspps  35569
  Copyright terms: Public domain W3C validator