Step | Hyp | Ref
| Expression |
1 | | df-ot 4638 |
. . 3
β’
β¨π·, π», π΄β© = β¨β¨π·, π»β©, π΄β© |
2 | | mppsval.p |
. . . 4
β’ π = (mPreStβπ) |
3 | | mppsval.j |
. . . 4
β’ π½ = (mPPStβπ) |
4 | | mppsval.c |
. . . 4
β’ πΆ = (mClsβπ) |
5 | 2, 3, 4 | mppsval 34594 |
. . 3
β’ π½ = {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} |
6 | 1, 5 | eleq12i 2827 |
. 2
β’
(β¨π·, π», π΄β© β π½ β β¨β¨π·, π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))}) |
7 | | oprabss 7515 |
. . . 4
β’
{β¨β¨π,
ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β ((V Γ V) Γ
V) |
8 | 7 | sseli 3979 |
. . 3
β’
(β¨β¨π·,
π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β β¨β¨π·, π»β©, π΄β© β ((V Γ V) Γ
V)) |
9 | 2 | mpstssv 34561 |
. . . . . 6
β’ π β ((V Γ V) Γ
V) |
10 | 9 | sseli 3979 |
. . . . 5
β’
(β¨π·, π», π΄β© β π β β¨π·, π», π΄β© β ((V Γ V) Γ
V)) |
11 | 1, 10 | eqeltrrid 2839 |
. . . 4
β’
(β¨π·, π», π΄β© β π β β¨β¨π·, π»β©, π΄β© β ((V Γ V) Γ
V)) |
12 | 11 | adantr 482 |
. . 3
β’
((β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»)) β β¨β¨π·, π»β©, π΄β© β ((V Γ V) Γ
V)) |
13 | | opelxp 5713 |
. . . 4
β’
(β¨β¨π·,
π»β©, π΄β© β ((V Γ V) Γ V)
β (β¨π·, π»β© β (V Γ V)
β§ π΄ β
V)) |
14 | | opelxp 5713 |
. . . . 5
β’
(β¨π·, π»β© β (V Γ V)
β (π· β V β§
π» β
V)) |
15 | | simp1 1137 |
. . . . . . . . . 10
β’ ((π = π· β§ β = π» β§ π = π΄) β π = π·) |
16 | | simp2 1138 |
. . . . . . . . . 10
β’ ((π = π· β§ β = π» β§ π = π΄) β β = π») |
17 | | simp3 1139 |
. . . . . . . . . 10
β’ ((π = π· β§ β = π» β§ π = π΄) β π = π΄) |
18 | 15, 16, 17 | oteq123d 4889 |
. . . . . . . . 9
β’ ((π = π· β§ β = π» β§ π = π΄) β β¨π, β, πβ© = β¨π·, π», π΄β©) |
19 | 18 | eleq1d 2819 |
. . . . . . . 8
β’ ((π = π· β§ β = π» β§ π = π΄) β (β¨π, β, πβ© β π β β¨π·, π», π΄β© β π)) |
20 | 15, 16 | oveq12d 7427 |
. . . . . . . . 9
β’ ((π = π· β§ β = π» β§ π = π΄) β (ππΆβ) = (π·πΆπ»)) |
21 | 17, 20 | eleq12d 2828 |
. . . . . . . 8
β’ ((π = π· β§ β = π» β§ π = π΄) β (π β (ππΆβ) β π΄ β (π·πΆπ»))) |
22 | 19, 21 | anbi12d 632 |
. . . . . . 7
β’ ((π = π· β§ β = π» β§ π = π΄) β ((β¨π, β, πβ© β π β§ π β (ππΆβ)) β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»)))) |
23 | 22 | eloprabga 7516 |
. . . . . 6
β’ ((π· β V β§ π» β V β§ π΄ β V) β
(β¨β¨π·, π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»)))) |
24 | 23 | 3expa 1119 |
. . . . 5
β’ (((π· β V β§ π» β V) β§ π΄ β V) β
(β¨β¨π·, π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»)))) |
25 | 14, 24 | sylanb 582 |
. . . 4
β’
((β¨π·, π»β© β (V Γ V)
β§ π΄ β V) β
(β¨β¨π·, π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»)))) |
26 | 13, 25 | sylbi 216 |
. . 3
β’
(β¨β¨π·,
π»β©, π΄β© β ((V Γ V) Γ V)
β (β¨β¨π·,
π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»)))) |
27 | 8, 12, 26 | pm5.21nii 380 |
. 2
β’
(β¨β¨π·,
π»β©, π΄β© β {β¨β¨π, ββ©, πβ© β£ (β¨π, β, πβ© β π β§ π β (ππΆβ))} β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»))) |
28 | 6, 27 | bitri 275 |
1
β’
(β¨π·, π», π΄β© β π½ β (β¨π·, π», π΄β© β π β§ π΄ β (π·πΆπ»))) |