Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmpps Structured version   Visualization version   GIF version

Theorem elmpps 35578
Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mppsval.p 𝑃 = (mPreSt‘𝑇)
mppsval.j 𝐽 = (mPPSt‘𝑇)
mppsval.c 𝐶 = (mCls‘𝑇)
Assertion
Ref Expression
elmpps (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))

Proof of Theorem elmpps
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ot 4635 . . 3 𝐷, 𝐻, 𝐴⟩ = ⟨⟨𝐷, 𝐻⟩, 𝐴
2 mppsval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 mppsval.j . . . 4 𝐽 = (mPPSt‘𝑇)
4 mppsval.c . . . 4 𝐶 = (mCls‘𝑇)
52, 3, 4mppsval 35577 . . 3 𝐽 = {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))}
61, 5eleq12i 2834 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))})
7 oprabss 7541 . . . 4 {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ⊆ ((V × V) × V)
87sseli 3979 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
92mpstssv 35544 . . . . . 6 𝑃 ⊆ ((V × V) × V)
109sseli 3979 . . . . 5 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ ((V × V) × V))
111, 10eqeltrrid 2846 . . . 4 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
1211adantr 480 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)) → ⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V))
13 opelxp 5721 . . . 4 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) ↔ (⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V))
14 opelxp 5721 . . . . 5 (⟨𝐷, 𝐻⟩ ∈ (V × V) ↔ (𝐷 ∈ V ∧ 𝐻 ∈ V))
15 simp1 1137 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → 𝑑 = 𝐷)
16 simp2 1138 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → = 𝐻)
17 simp3 1139 . . . . . . . . . 10 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → 𝑎 = 𝐴)
1815, 16, 17oteq123d 4888 . . . . . . . . 9 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → ⟨𝑑, , 𝑎⟩ = ⟨𝐷, 𝐻, 𝐴⟩)
1918eleq1d 2826 . . . . . . . 8 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (⟨𝑑, , 𝑎⟩ ∈ 𝑃 ↔ ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃))
2015, 16oveq12d 7449 . . . . . . . . 9 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (𝑑𝐶) = (𝐷𝐶𝐻))
2117, 20eleq12d 2835 . . . . . . . 8 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → (𝑎 ∈ (𝑑𝐶) ↔ 𝐴 ∈ (𝐷𝐶𝐻)))
2219, 21anbi12d 632 . . . . . . 7 ((𝑑 = 𝐷 = 𝐻𝑎 = 𝐴) → ((⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶)) ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2322eloprabga 7542 . . . . . 6 ((𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
24233expa 1119 . . . . 5 (((𝐷 ∈ V ∧ 𝐻 ∈ V) ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2514, 24sylanb 581 . . . 4 ((⟨𝐷, 𝐻⟩ ∈ (V × V) ∧ 𝐴 ∈ V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
2613, 25sylbi 217 . . 3 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ ((V × V) × V) → (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻))))
278, 12, 26pm5.21nii 378 . 2 (⟨⟨𝐷, 𝐻⟩, 𝐴⟩ ∈ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ 𝑃𝑎 ∈ (𝑑𝐶))} ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))
286, 27bitri 275 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (𝐷𝐶𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cop 4632  cotp 4634   × cxp 5683  cfv 6561  (class class class)co 7431  {coprab 7432  mPreStcmpst 35478  mClscmcls 35482  mPPStcmpps 35483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-ot 4635  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpst 35498  df-mpps 35503
This theorem is referenced by:  mthmpps  35587  mclspps  35589
  Copyright terms: Public domain W3C validator