Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaordnrex Structured version   Visualization version   GIF version

Theorem oaordnrex 43328
Description: When omega is added on the right to ordinals zero and one, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oaordnrex ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))

Proof of Theorem oaordnrex
StepHypRef Expression
1 0lt1o 8414 . . 3 ∅ ∈ 1o
2 ordom 7801 . . . 4 Ord ω
3 ordirr 6319 . . . . 5 (Ord ω → ¬ ω ∈ ω)
4 omelon 9531 . . . . . . 7 ω ∈ On
5 oa0r 8448 . . . . . . 7 (ω ∈ On → (∅ +o ω) = ω)
64, 5ax-mp 5 . . . . . 6 (∅ +o ω) = ω
7 1oaomeqom 43326 . . . . . 6 (1o +o ω) = ω
86, 7eleq12i 2824 . . . . 5 ((∅ +o ω) ∈ (1o +o ω) ↔ ω ∈ ω)
93, 8sylnibr 329 . . . 4 (Ord ω → ¬ (∅ +o ω) ∈ (1o +o ω))
102, 9ax-mp 5 . . 3 ¬ (∅ +o ω) ∈ (1o +o ω)
111, 102th 264 . 2 (∅ ∈ 1o ↔ ¬ (∅ +o ω) ∈ (1o +o ω))
12 xor3 382 . 2 (¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) ↔ (∅ ∈ 1o ↔ ¬ (∅ +o ω) ∈ (1o +o ω)))
1311, 12mpbir 231 1 ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  c0 4278  Ord word 6300  Oncon0 6301  (class class class)co 7341  ωcom 7791  1oc1o 8373   +o coa 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384
This theorem is referenced by:  oaordnr  43329
  Copyright terms: Public domain W3C validator