| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omnord1ex | Structured version Visualization version GIF version | ||
| Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| omnord1ex | ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8447 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4730 | . . . 4 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8445 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2828 | . . 3 ⊢ 1o ∈ 2o |
| 5 | ordom 7855 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6353 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | omelon 9606 | . . . . . . 7 ⊢ ω ∈ On | |
| 8 | 1onn 8607 | . . . . . . 7 ⊢ 1o ∈ ω | |
| 9 | 0lt1o 8471 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 10 | omabslem 8617 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o) → (1o ·o ω) = ω) | |
| 11 | 7, 8, 9, 10 | mp3an 1463 | . . . . . 6 ⊢ (1o ·o ω) = ω |
| 12 | 2omomeqom 43299 | . . . . . 6 ⊢ (2o ·o ω) = ω | |
| 13 | 11, 12 | eleq12i 2822 | . . . . 5 ⊢ ((1o ·o ω) ∈ (2o ·o ω) ↔ ω ∈ ω) |
| 14 | 6, 13 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 15 | 5, 14 | ax-mp 5 | . . 3 ⊢ ¬ (1o ·o ω) ∈ (2o ·o ω) |
| 16 | 4, 15 | 2th 264 | . 2 ⊢ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 17 | xor3 382 | . 2 ⊢ (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) ↔ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4299 {cpr 4594 Ord word 6334 Oncon0 6335 (class class class)co 7390 ωcom 7845 1oc1o 8430 2oc2o 8431 ·o comu 8435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 |
| This theorem is referenced by: omnord1 43301 |
| Copyright terms: Public domain | W3C validator |