| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omnord1ex | Structured version Visualization version GIF version | ||
| Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| omnord1ex | ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8401 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4715 | . . . 4 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8399 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2832 | . . 3 ⊢ 1o ∈ 2o |
| 5 | ordom 7812 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6329 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | omelon 9543 | . . . . . . 7 ⊢ ω ∈ On | |
| 8 | 1onn 8561 | . . . . . . 7 ⊢ 1o ∈ ω | |
| 9 | 0lt1o 8425 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 10 | omabslem 8571 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o) → (1o ·o ω) = ω) | |
| 11 | 7, 8, 9, 10 | mp3an 1463 | . . . . . 6 ⊢ (1o ·o ω) = ω |
| 12 | 2omomeqom 43420 | . . . . . 6 ⊢ (2o ·o ω) = ω | |
| 13 | 11, 12 | eleq12i 2826 | . . . . 5 ⊢ ((1o ·o ω) ∈ (2o ·o ω) ↔ ω ∈ ω) |
| 14 | 6, 13 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 15 | 5, 14 | ax-mp 5 | . . 3 ⊢ ¬ (1o ·o ω) ∈ (2o ·o ω) |
| 16 | 4, 15 | 2th 264 | . 2 ⊢ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 17 | xor3 382 | . 2 ⊢ (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) ↔ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {cpr 4577 Ord word 6310 Oncon0 6311 (class class class)co 7352 ωcom 7802 1oc1o 8384 2oc2o 8385 ·o comu 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 |
| This theorem is referenced by: omnord1 43422 |
| Copyright terms: Public domain | W3C validator |