| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omnord1ex | Structured version Visualization version GIF version | ||
| Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| omnord1ex | ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8395 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4716 | . . . 4 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8393 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2830 | . . 3 ⊢ 1o ∈ 2o |
| 5 | ordom 7806 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6324 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | omelon 9536 | . . . . . . 7 ⊢ ω ∈ On | |
| 8 | 1onn 8555 | . . . . . . 7 ⊢ 1o ∈ ω | |
| 9 | 0lt1o 8419 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 10 | omabslem 8565 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o) → (1o ·o ω) = ω) | |
| 11 | 7, 8, 9, 10 | mp3an 1463 | . . . . . 6 ⊢ (1o ·o ω) = ω |
| 12 | 2omomeqom 43335 | . . . . . 6 ⊢ (2o ·o ω) = ω | |
| 13 | 11, 12 | eleq12i 2824 | . . . . 5 ⊢ ((1o ·o ω) ∈ (2o ·o ω) ↔ ω ∈ ω) |
| 14 | 6, 13 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 15 | 5, 14 | ax-mp 5 | . . 3 ⊢ ¬ (1o ·o ω) ∈ (2o ·o ω) |
| 16 | 4, 15 | 2th 264 | . 2 ⊢ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 17 | xor3 382 | . 2 ⊢ (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) ↔ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∅c0 4283 {cpr 4578 Ord word 6305 Oncon0 6306 (class class class)co 7346 ωcom 7796 1oc1o 8378 2oc2o 8379 ·o comu 8383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 |
| This theorem is referenced by: omnord1 43337 |
| Copyright terms: Public domain | W3C validator |