| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omnord1ex | Structured version Visualization version GIF version | ||
| Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| omnord1ex | ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8495 | . . . . 5 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4744 | . . . 4 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8493 | . . . 4 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2834 | . . 3 ⊢ 1o ∈ 2o |
| 5 | ordom 7876 | . . . 4 ⊢ Ord ω | |
| 6 | ordirr 6375 | . . . . 5 ⊢ (Ord ω → ¬ ω ∈ ω) | |
| 7 | omelon 9665 | . . . . . . 7 ⊢ ω ∈ On | |
| 8 | 1onn 8657 | . . . . . . 7 ⊢ 1o ∈ ω | |
| 9 | 0lt1o 8521 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
| 10 | omabslem 8667 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o) → (1o ·o ω) = ω) | |
| 11 | 7, 8, 9, 10 | mp3an 1463 | . . . . . 6 ⊢ (1o ·o ω) = ω |
| 12 | 2omomeqom 43294 | . . . . . 6 ⊢ (2o ·o ω) = ω | |
| 13 | 11, 12 | eleq12i 2828 | . . . . 5 ⊢ ((1o ·o ω) ∈ (2o ·o ω) ↔ ω ∈ ω) |
| 14 | 6, 13 | sylnibr 329 | . . . 4 ⊢ (Ord ω → ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 15 | 5, 14 | ax-mp 5 | . . 3 ⊢ ¬ (1o ·o ω) ∈ (2o ·o ω) |
| 16 | 4, 15 | 2th 264 | . 2 ⊢ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω)) |
| 17 | xor3 382 | . 2 ⊢ (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) ↔ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω))) | |
| 18 | 16, 17 | mpbir 231 | 1 ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∅c0 4313 {cpr 4608 Ord word 6356 Oncon0 6357 (class class class)co 7410 ωcom 7866 1oc1o 8478 2oc2o 8479 ·o comu 8483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 |
| This theorem is referenced by: omnord1 43296 |
| Copyright terms: Public domain | W3C validator |