Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omnord1ex Structured version   Visualization version   GIF version

Theorem omnord1ex 43277
Description: When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
omnord1ex ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))

Proof of Theorem omnord1ex
StepHypRef Expression
1 1oex 8405 . . . . 5 1o ∈ V
21prid2 4717 . . . 4 1o ∈ {∅, 1o}
3 df2o3 8403 . . . 4 2o = {∅, 1o}
42, 3eleqtrri 2827 . . 3 1o ∈ 2o
5 ordom 7816 . . . 4 Ord ω
6 ordirr 6329 . . . . 5 (Ord ω → ¬ ω ∈ ω)
7 omelon 9561 . . . . . . 7 ω ∈ On
8 1onn 8565 . . . . . . 7 1o ∈ ω
9 0lt1o 8429 . . . . . . 7 ∅ ∈ 1o
10 omabslem 8575 . . . . . . 7 ((ω ∈ On ∧ 1o ∈ ω ∧ ∅ ∈ 1o) → (1o ·o ω) = ω)
117, 8, 9, 10mp3an 1463 . . . . . 6 (1o ·o ω) = ω
12 2omomeqom 43276 . . . . . 6 (2o ·o ω) = ω
1311, 12eleq12i 2821 . . . . 5 ((1o ·o ω) ∈ (2o ·o ω) ↔ ω ∈ ω)
146, 13sylnibr 329 . . . 4 (Ord ω → ¬ (1o ·o ω) ∈ (2o ·o ω))
155, 14ax-mp 5 . . 3 ¬ (1o ·o ω) ∈ (2o ·o ω)
164, 152th 264 . 2 (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω))
17 xor3 382 . 2 (¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) ↔ (1o ∈ 2o ↔ ¬ (1o ·o ω) ∈ (2o ·o ω)))
1816, 17mpbir 231 1 ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  c0 4286  {cpr 4581  Ord word 6310  Oncon0 6311  (class class class)co 7353  ωcom 7806  1oc1o 8388  2oc2o 8389   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400
This theorem is referenced by:  omnord1  43278
  Copyright terms: Public domain W3C validator