MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem4 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem4 27256
Description: Lemma 4 for gausslemma2d 27261. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem4 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
41, 2, 3gausslemma2dlem1 27253 . 2 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
5 eldif 3921 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
6 prm23ge5 16762 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
7 eleq1 2816 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ {2} ↔ 2 ∈ {2}))
87notbid 318 . . . . . . . 8 (𝑃 = 2 → (¬ 𝑃 ∈ {2} ↔ ¬ 2 ∈ {2}))
9 2ex 12239 . . . . . . . . . . . 12 2 ∈ V
109snid 4622 . . . . . . . . . . 11 2 ∈ {2}
11102a1i 12 . . . . . . . . . 10 (𝑃 = 2 → (∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ≠ (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) → 2 ∈ {2}))
1211necon1bd 2943 . . . . . . . . 9 (𝑃 = 2 → (¬ 2 ∈ {2} → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1312a1dd 50 . . . . . . . 8 (𝑃 = 2 → (¬ 2 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
148, 13sylbid 240 . . . . . . 7 (𝑃 = 2 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
15 gausslemma2d.m . . . . . . . . . 10 𝑀 = (⌊‘(𝑃 / 4))
16 3lt4 12331 . . . . . . . . . . . 12 3 < 4
17 breq1 5105 . . . . . . . . . . . 12 (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4))
1816, 17mpbiri 258 . . . . . . . . . . 11 (𝑃 = 3 → 𝑃 < 4)
19 3nn0 12436 . . . . . . . . . . . . 13 3 ∈ ℕ0
20 eleq1 2816 . . . . . . . . . . . . 13 (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0))
2119, 20mpbiri 258 . . . . . . . . . . . 12 (𝑃 = 3 → 𝑃 ∈ ℕ0)
22 4nn 12245 . . . . . . . . . . . 12 4 ∈ ℕ
23 divfl0 13762 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2421, 22, 23sylancl 586 . . . . . . . . . . 11 (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2518, 24mpbid 232 . . . . . . . . . 10 (𝑃 = 3 → (⌊‘(𝑃 / 4)) = 0)
2615, 25eqtrid 2776 . . . . . . . . 9 (𝑃 = 3 → 𝑀 = 0)
27 oveq2 7377 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (1...𝑀) = (1...0))
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0))
29 fz10 13482 . . . . . . . . . . . . . . 15 (1...0) = ∅
3028, 29eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅)
3130prodeq1d 15862 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ ∅ (𝑅𝑘))
32 prod0 15885 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑅𝑘) = 1
3331, 32eqtrdi 2780 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = 1)
34 oveq1 7376 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 1) = (0 + 1))
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1))
36 0p1e1 12279 . . . . . . . . . . . . . . 15 (0 + 1) = 1
3735, 36eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1)
3837oveq1d 7384 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻))
3938prodeq1d 15862 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
4033, 39oveq12d 7387 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)))
41 fzfid 13914 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin)
42 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
4342breq1d 5112 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
4442oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
4543, 42, 44ifbieq12d 4513 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
46 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻))
47 elfzelz 13461 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
4847zcnd 12615 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
49 2cnd 12240 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 2 ∈ ℂ)
5048, 49mulcld 11170 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℂ)
5150adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
52 eldifi 4090 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
53 prmz 16621 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5453zcnd 12615 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
551, 52, 543syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
5655adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℂ)
5756, 51subcld 11509 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℂ)
5851, 57ifcld 4531 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈ ℂ)
593, 45, 46, 58fvmptd3 6973 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
6059, 58eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6160adantll 714 . . . . . . . . . . . . 13 (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6241, 61fprodcl 15894 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ∈ ℂ)
6362mullidd 11168 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
6440, 63eqtr2d 2765 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
6564ex 412 . . . . . . . . 9 (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6626, 65syl 17 . . . . . . . 8 (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6766a1d 25 . . . . . . 7 (𝑃 = 3 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
681, 15gausslemma2dlem0d 27246 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
6968nn0red 12480 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
7069ltp1d 12089 . . . . . . . . . . . 12 (𝜑𝑀 < (𝑀 + 1))
71 fzdisj 13488 . . . . . . . . . . . 12 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7372adantl 481 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
74 eluzelre 12780 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℝ)
75 4re 12246 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ∈ ℝ)
77 4ne0 12270 . . . . . . . . . . . . . . . . . . . . 21 4 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≠ 0)
7974, 76, 78redivcld 11986 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (𝑃 / 4) ∈ ℝ)
8079flcld 13736 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ)
81 nnrp 12939 . . . . . . . . . . . . . . . . . . . . 21 (4 ∈ ℕ → 4 ∈ ℝ+)
8222, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ+
83 eluz2 12775 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
84 4lt5 12334 . . . . . . . . . . . . . . . . . . . . . . 23 4 < 5
85 5re 12249 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℝ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 5 ∈ ℝ)
87 zre 12509 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
8887adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℝ)
89 ltleletr 11243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9075, 86, 88, 89mp3an2i 1468 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9184, 90mpani 696 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃))
92913impia 1117 . . . . . . . . . . . . . . . . . . . . 21 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)
9383, 92sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≤ 𝑃)
94 divge1 12997 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4))
9582, 74, 93, 94mp3an2i 1468 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → 1 ≤ (𝑃 / 4))
96 1zzd 12540 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 1 ∈ ℤ)
97 flge 13743 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 / 4) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9879, 96, 97syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9995, 98mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → 1 ≤ (⌊‘(𝑃 / 4)))
100 elnnz1 12535 . . . . . . . . . . . . . . . . . 18 ((⌊‘(𝑃 / 4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑃 / 4))))
10180, 99, 100sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ)
102101adantl 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ)
103 oddprm 16757 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
104103adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((𝑃 − 1) / 2) ∈ ℕ)
105 prmuz2 16642 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
10652, 105syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
107106adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → 𝑃 ∈ (ℤ‘2))
108 fldiv4lem1div2uz2 13774 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
110102, 104, 1093jca 1128 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
111110ex 412 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
1121, 111syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
113112impcom 407 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
1142oveq2i 7380 . . . . . . . . . . . . . 14 (1...𝐻) = (1...((𝑃 − 1) / 2))
11515, 114eleq12i 2821 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)))
116 elfz1b 13530 . . . . . . . . . . . . 13 ((⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
117115, 116bitri 275 . . . . . . . . . . . 12 (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
118113, 117sylibr 234 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻))
119 fzsplit 13487 . . . . . . . . . . 11 (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
120118, 119syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
121 fzfid 13914 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin)
12260adantll 714 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
12373, 120, 121, 122fprodsplit 15908 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
124123ex 412 . . . . . . . 8 (𝑃 ∈ (ℤ‘5) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
125124a1d 25 . . . . . . 7 (𝑃 ∈ (ℤ‘5) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
12614, 67, 1253jaoi 1430 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
1276, 126syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
128127imp 406 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1295, 128sylbi 217 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1301, 129mpcom 38 . 2 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
1314, 130eqtrd 2764 1 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cun 3909  cin 3910  c0 4292  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  cfl 13728  !cfa 14214  cprod 15845  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ioo 13286  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-prm 16618
This theorem is referenced by:  gausslemma2dlem6  27259
  Copyright terms: Public domain W3C validator