MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem4 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem4 27278
Description: Lemma 4 for gausslemma2d 27283. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem4 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
41, 2, 3gausslemma2dlem1 27275 . 2 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
5 eldif 3913 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
6 prm23ge5 16727 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
7 eleq1 2816 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ {2} ↔ 2 ∈ {2}))
87notbid 318 . . . . . . . 8 (𝑃 = 2 → (¬ 𝑃 ∈ {2} ↔ ¬ 2 ∈ {2}))
9 2ex 12205 . . . . . . . . . . . 12 2 ∈ V
109snid 4614 . . . . . . . . . . 11 2 ∈ {2}
11102a1i 12 . . . . . . . . . 10 (𝑃 = 2 → (∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ≠ (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) → 2 ∈ {2}))
1211necon1bd 2943 . . . . . . . . 9 (𝑃 = 2 → (¬ 2 ∈ {2} → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1312a1dd 50 . . . . . . . 8 (𝑃 = 2 → (¬ 2 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
148, 13sylbid 240 . . . . . . 7 (𝑃 = 2 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
15 gausslemma2d.m . . . . . . . . . 10 𝑀 = (⌊‘(𝑃 / 4))
16 3lt4 12297 . . . . . . . . . . . 12 3 < 4
17 breq1 5095 . . . . . . . . . . . 12 (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4))
1816, 17mpbiri 258 . . . . . . . . . . 11 (𝑃 = 3 → 𝑃 < 4)
19 3nn0 12402 . . . . . . . . . . . . 13 3 ∈ ℕ0
20 eleq1 2816 . . . . . . . . . . . . 13 (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0))
2119, 20mpbiri 258 . . . . . . . . . . . 12 (𝑃 = 3 → 𝑃 ∈ ℕ0)
22 4nn 12211 . . . . . . . . . . . 12 4 ∈ ℕ
23 divfl0 13728 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2421, 22, 23sylancl 586 . . . . . . . . . . 11 (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2518, 24mpbid 232 . . . . . . . . . 10 (𝑃 = 3 → (⌊‘(𝑃 / 4)) = 0)
2615, 25eqtrid 2776 . . . . . . . . 9 (𝑃 = 3 → 𝑀 = 0)
27 oveq2 7357 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (1...𝑀) = (1...0))
2827adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0))
29 fz10 13448 . . . . . . . . . . . . . . 15 (1...0) = ∅
3028, 29eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅)
3130prodeq1d 15827 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ ∅ (𝑅𝑘))
32 prod0 15850 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑅𝑘) = 1
3331, 32eqtrdi 2780 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = 1)
34 oveq1 7356 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 1) = (0 + 1))
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1))
36 0p1e1 12245 . . . . . . . . . . . . . . 15 (0 + 1) = 1
3735, 36eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1)
3837oveq1d 7364 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻))
3938prodeq1d 15827 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
4033, 39oveq12d 7367 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)))
41 fzfid 13880 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin)
42 oveq1 7356 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
4342breq1d 5102 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
4442oveq2d 7365 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
4543, 42, 44ifbieq12d 4505 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
46 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻))
47 elfzelz 13427 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
4847zcnd 12581 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
49 2cnd 12206 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 2 ∈ ℂ)
5048, 49mulcld 11135 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℂ)
5150adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
52 eldifi 4082 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
53 prmz 16586 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5453zcnd 12581 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
551, 52, 543syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
5655adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℂ)
5756, 51subcld 11475 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℂ)
5851, 57ifcld 4523 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈ ℂ)
593, 45, 46, 58fvmptd3 6953 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
6059, 58eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6160adantll 714 . . . . . . . . . . . . 13 (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6241, 61fprodcl 15859 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ∈ ℂ)
6362mullidd 11133 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
6440, 63eqtr2d 2765 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
6564ex 412 . . . . . . . . 9 (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6626, 65syl 17 . . . . . . . 8 (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6766a1d 25 . . . . . . 7 (𝑃 = 3 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
681, 15gausslemma2dlem0d 27268 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
6968nn0red 12446 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
7069ltp1d 12055 . . . . . . . . . . . 12 (𝜑𝑀 < (𝑀 + 1))
71 fzdisj 13454 . . . . . . . . . . . 12 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7372adantl 481 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
74 eluzelre 12746 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℝ)
75 4re 12212 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ∈ ℝ)
77 4ne0 12236 . . . . . . . . . . . . . . . . . . . . 21 4 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≠ 0)
7974, 76, 78redivcld 11952 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (𝑃 / 4) ∈ ℝ)
8079flcld 13702 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ)
81 nnrp 12905 . . . . . . . . . . . . . . . . . . . . 21 (4 ∈ ℕ → 4 ∈ ℝ+)
8222, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ+
83 eluz2 12741 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
84 4lt5 12300 . . . . . . . . . . . . . . . . . . . . . . 23 4 < 5
85 5re 12215 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℝ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 5 ∈ ℝ)
87 zre 12475 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
8887adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℝ)
89 ltleletr 11209 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9075, 86, 88, 89mp3an2i 1468 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9184, 90mpani 696 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃))
92913impia 1117 . . . . . . . . . . . . . . . . . . . . 21 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)
9383, 92sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≤ 𝑃)
94 divge1 12963 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4))
9582, 74, 93, 94mp3an2i 1468 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → 1 ≤ (𝑃 / 4))
96 1zzd 12506 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 1 ∈ ℤ)
97 flge 13709 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 / 4) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9879, 96, 97syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9995, 98mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → 1 ≤ (⌊‘(𝑃 / 4)))
100 elnnz1 12501 . . . . . . . . . . . . . . . . . 18 ((⌊‘(𝑃 / 4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑃 / 4))))
10180, 99, 100sylanbrc 583 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ)
102101adantl 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ)
103 oddprm 16722 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
104103adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((𝑃 − 1) / 2) ∈ ℕ)
105 prmuz2 16607 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
10652, 105syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
107106adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → 𝑃 ∈ (ℤ‘2))
108 fldiv4lem1div2uz2 13740 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
110102, 104, 1093jca 1128 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
111110ex 412 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
1121, 111syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
113112impcom 407 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
1142oveq2i 7360 . . . . . . . . . . . . . 14 (1...𝐻) = (1...((𝑃 − 1) / 2))
11515, 114eleq12i 2821 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)))
116 elfz1b 13496 . . . . . . . . . . . . 13 ((⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
117115, 116bitri 275 . . . . . . . . . . . 12 (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
118113, 117sylibr 234 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻))
119 fzsplit 13453 . . . . . . . . . . 11 (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
120118, 119syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
121 fzfid 13880 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin)
12260adantll 714 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
12373, 120, 121, 122fprodsplit 15873 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
124123ex 412 . . . . . . . 8 (𝑃 ∈ (ℤ‘5) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
125124a1d 25 . . . . . . 7 (𝑃 ∈ (ℤ‘5) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
12614, 67, 1253jaoi 1430 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
1276, 126syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
128127imp 406 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1295, 128sylbi 217 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1301, 129mpcom 38 . 2 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
1314, 130eqtrd 2764 1 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3900  cun 3901  cin 3902  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  0cn0 12384  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  cfl 13694  !cfa 14180  cprod 15810  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ioo 13252  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-dvds 16164  df-prm 16583
This theorem is referenced by:  gausslemma2dlem6  27281
  Copyright terms: Public domain W3C validator