Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem4 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem4 25944
 Description: Lemma 4 for gausslemma2d 25949. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem4 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
41, 2, 3gausslemma2dlem1 25941 . 2 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
5 eldif 3945 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}))
6 prm23ge5 16151 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
7 eleq1 2900 . . . . . . . . 9 (𝑃 = 2 → (𝑃 ∈ {2} ↔ 2 ∈ {2}))
87notbid 320 . . . . . . . 8 (𝑃 = 2 → (¬ 𝑃 ∈ {2} ↔ ¬ 2 ∈ {2}))
9 2ex 11713 . . . . . . . . . . . 12 2 ∈ V
109snid 4600 . . . . . . . . . . 11 2 ∈ {2}
11102a1i 12 . . . . . . . . . 10 (𝑃 = 2 → (∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ≠ (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) → 2 ∈ {2}))
1211necon1bd 3034 . . . . . . . . 9 (𝑃 = 2 → (¬ 2 ∈ {2} → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1312a1dd 50 . . . . . . . 8 (𝑃 = 2 → (¬ 2 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
148, 13sylbid 242 . . . . . . 7 (𝑃 = 2 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
15 gausslemma2d.m . . . . . . . . . 10 𝑀 = (⌊‘(𝑃 / 4))
16 3lt4 11810 . . . . . . . . . . . 12 3 < 4
17 breq1 5068 . . . . . . . . . . . 12 (𝑃 = 3 → (𝑃 < 4 ↔ 3 < 4))
1816, 17mpbiri 260 . . . . . . . . . . 11 (𝑃 = 3 → 𝑃 < 4)
19 3nn0 11914 . . . . . . . . . . . . 13 3 ∈ ℕ0
20 eleq1 2900 . . . . . . . . . . . . 13 (𝑃 = 3 → (𝑃 ∈ ℕ0 ↔ 3 ∈ ℕ0))
2119, 20mpbiri 260 . . . . . . . . . . . 12 (𝑃 = 3 → 𝑃 ∈ ℕ0)
22 4nn 11719 . . . . . . . . . . . 12 4 ∈ ℕ
23 divfl0 13193 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ0 ∧ 4 ∈ ℕ) → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2421, 22, 23sylancl 588 . . . . . . . . . . 11 (𝑃 = 3 → (𝑃 < 4 ↔ (⌊‘(𝑃 / 4)) = 0))
2518, 24mpbid 234 . . . . . . . . . 10 (𝑃 = 3 → (⌊‘(𝑃 / 4)) = 0)
2615, 25syl5eq 2868 . . . . . . . . 9 (𝑃 = 3 → 𝑀 = 0)
27 oveq2 7163 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (1...𝑀) = (1...0))
2827adantr 483 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = (1...0))
29 fz10 12927 . . . . . . . . . . . . . . 15 (1...0) = ∅
3028, 29syl6eq 2872 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (1...𝑀) = ∅)
3130prodeq1d 15274 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ ∅ (𝑅𝑘))
32 prod0 15296 . . . . . . . . . . . . 13 𝑘 ∈ ∅ (𝑅𝑘) = 1
3331, 32syl6eq 2872 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = 1)
34 oveq1 7162 . . . . . . . . . . . . . . . 16 (𝑀 = 0 → (𝑀 + 1) = (0 + 1))
3534adantr 483 . . . . . . . . . . . . . . 15 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = (0 + 1))
36 0p1e1 11758 . . . . . . . . . . . . . . 15 (0 + 1) = 1
3735, 36syl6eq 2872 . . . . . . . . . . . . . 14 ((𝑀 = 0 ∧ 𝜑) → (𝑀 + 1) = 1)
3837oveq1d 7170 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → ((𝑀 + 1)...𝐻) = (1...𝐻))
3938prodeq1d 15274 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
4033, 39oveq12d 7173 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) = (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)))
41 fzfid 13340 . . . . . . . . . . . . 13 ((𝑀 = 0 ∧ 𝜑) → (1...𝐻) ∈ Fin)
42 oveq1 7162 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
4342breq1d 5075 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
4442oveq2d 7171 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
4543, 42, 44ifbieq12d 4493 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
46 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ (1...𝐻))
47 elfzelz 12907 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
4847zcnd 12087 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
49 2cnd 11714 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝐻) → 2 ∈ ℂ)
5048, 49mulcld 10660 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℂ)
5150adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
52 eldifi 4102 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
53 prmz 16018 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5453zcnd 12087 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
551, 52, 543syl 18 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
5655adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑃 ∈ ℂ)
5756, 51subcld 10996 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℂ)
5851, 57ifcld 4511 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝐻)) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) ∈ ℂ)
593, 45, 46, 58fvmptd3 6790 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
6059, 58eqeltrd 2913 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6160adantll 712 . . . . . . . . . . . . 13 (((𝑀 = 0 ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
6241, 61fprodcl 15305 . . . . . . . . . . . 12 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) ∈ ℂ)
6362mulid2d 10658 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝜑) → (1 · ∏𝑘 ∈ (1...𝐻)(𝑅𝑘)) = ∏𝑘 ∈ (1...𝐻)(𝑅𝑘))
6440, 63eqtr2d 2857 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
6564ex 415 . . . . . . . . 9 (𝑀 = 0 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6626, 65syl 17 . . . . . . . 8 (𝑃 = 3 → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
6766a1d 25 . . . . . . 7 (𝑃 = 3 → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
681, 15gausslemma2dlem0d 25934 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
6968nn0red 11955 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
7069ltp1d 11569 . . . . . . . . . . . 12 (𝜑𝑀 < (𝑀 + 1))
71 fzdisj 12933 . . . . . . . . . . . 12 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7372adantl 484 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
74 eluzelre 12253 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 𝑃 ∈ ℝ)
75 4re 11720 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ∈ ℝ)
77 4ne0 11744 . . . . . . . . . . . . . . . . . . . . 21 4 ≠ 0
7877a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≠ 0)
7974, 76, 78redivcld 11467 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (𝑃 / 4) ∈ ℝ)
8079flcld 13167 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℤ)
81 nnrp 12399 . . . . . . . . . . . . . . . . . . . . 21 (4 ∈ ℕ → 4 ∈ ℝ+)
8222, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ+
83 eluz2 12248 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
84 4lt5 11813 . . . . . . . . . . . . . . . . . . . . . . 23 4 < 5
85 5re 11723 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 ∈ ℝ
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 5 ∈ ℝ)
87 zre 11984 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
8887adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℝ)
89 ltleletr 10732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 5 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9075, 86, 88, 89mp3an2i 1462 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((4 < 5 ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃))
9184, 90mpani 694 . . . . . . . . . . . . . . . . . . . . . 22 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (5 ≤ 𝑃 → 4 ≤ 𝑃))
92913impia 1113 . . . . . . . . . . . . . . . . . . . . 21 ((5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) → 4 ≤ 𝑃)
9383, 92sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 4 ≤ 𝑃)
94 divge1 12456 . . . . . . . . . . . . . . . . . . . 20 ((4 ∈ ℝ+𝑃 ∈ ℝ ∧ 4 ≤ 𝑃) → 1 ≤ (𝑃 / 4))
9582, 74, 93, 94mp3an2i 1462 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → 1 ≤ (𝑃 / 4))
96 1zzd 12012 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℤ‘5) → 1 ∈ ℤ)
97 flge 13174 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 / 4) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9879, 96, 97syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘5) → (1 ≤ (𝑃 / 4) ↔ 1 ≤ (⌊‘(𝑃 / 4))))
9995, 98mpbid 234 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℤ‘5) → 1 ≤ (⌊‘(𝑃 / 4)))
100 elnnz1 12007 . . . . . . . . . . . . . . . . . 18 ((⌊‘(𝑃 / 4)) ∈ ℕ ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ 1 ≤ (⌊‘(𝑃 / 4))))
10180, 99, 100sylanbrc 585 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘5) → (⌊‘(𝑃 / 4)) ∈ ℕ)
102101adantl 484 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ∈ ℕ)
103 oddprm 16146 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
104103adantr 483 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((𝑃 − 1) / 2) ∈ ℕ)
105 prmuz2 16039 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
10652, 105syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
107106adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → 𝑃 ∈ (ℤ‘2))
108 fldiv4lem1div2uz2 13205 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
109107, 108syl 17 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
110102, 104, 1093jca 1124 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∈ (ℤ‘5)) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
111110ex 415 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
1121, 111syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑃 ∈ (ℤ‘5) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))))
113112impcom 410 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
1142oveq2i 7166 . . . . . . . . . . . . . 14 (1...𝐻) = (1...((𝑃 − 1) / 2))
11515, 114eleq12i 2905 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝐻) ↔ (⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)))
116 elfz1b 12975 . . . . . . . . . . . . 13 ((⌊‘(𝑃 / 4)) ∈ (1...((𝑃 − 1) / 2)) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
117115, 116bitri 277 . . . . . . . . . . . 12 (𝑀 ∈ (1...𝐻) ↔ ((⌊‘(𝑃 / 4)) ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
118113, 117sylibr 236 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → 𝑀 ∈ (1...𝐻))
119 fzsplit 12932 . . . . . . . . . . 11 (𝑀 ∈ (1...𝐻) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
120118, 119syl 17 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
121 fzfid 13340 . . . . . . . . . 10 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → (1...𝐻) ∈ Fin)
12260adantll 712 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘5) ∧ 𝜑) ∧ 𝑘 ∈ (1...𝐻)) → (𝑅𝑘) ∈ ℂ)
12373, 120, 121, 122fprodsplit 15319 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘5) ∧ 𝜑) → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
124123ex 415 . . . . . . . 8 (𝑃 ∈ (ℤ‘5) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
125124a1d 25 . . . . . . 7 (𝑃 ∈ (ℤ‘5) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
12614, 67, 1253jaoi 1423 . . . . . 6 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
1276, 126syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 𝑃 ∈ {2} → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))))
128127imp 409 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∈ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1295, 128sylbi 219 . . 3 (𝑃 ∈ (ℙ ∖ {2}) → (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘))))
1301, 129mpcom 38 . 2 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑅𝑘) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
1314, 130eqtrd 2856 1 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∨ w3o 1082   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110   ≠ wne 3016   ∖ cdif 3932   ∪ cun 3933   ∩ cin 3934  ∅c0 4290  ifcif 4466  {csn 4566   class class class wbr 5065   ↦ cmpt 5145  ‘cfv 6354  (class class class)co 7155  ℂcc 10534  ℝcr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674   ≤ cle 10675   − cmin 10869   / cdiv 11296  ℕcn 11637  2c2 11691  3c3 11692  4c4 11693  5c5 11694  ℕ0cn0 11896  ℤcz 11980  ℤ≥cuz 12242  ℝ+crp 12388  ...cfz 12891  ⌊cfl 13159  !cfa 13632  ∏cprod 15258  ℙcprime 16014 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ioo 12741  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-fac 13633  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-prod 15259  df-dvds 15607  df-prm 16015 This theorem is referenced by:  gausslemma2dlem6  25947
 Copyright terms: Public domain W3C validator