Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmapsn Structured version   Visualization version   GIF version

Theorem unirnmapsn 45156
Description: Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmapsn.A (𝜑𝐴𝑉)
unirnmapsn.b (𝜑𝐵𝑊)
unirnmapsn.C 𝐶 = {𝐴}
unirnmapsn.x (𝜑𝑋 ⊆ (𝐵m 𝐶))
Assertion
Ref Expression
unirnmapsn (𝜑𝑋 = (ran 𝑋m 𝐶))

Proof of Theorem unirnmapsn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmapsn.C . . . . 5 𝐶 = {𝐴}
2 snex 5441 . . . . 5 {𝐴} ∈ V
31, 2eqeltri 2834 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (𝜑𝐶 ∈ V)
5 unirnmapsn.x . . 3 (𝜑𝑋 ⊆ (𝐵m 𝐶))
64, 5unirnmap 45150 . 2 (𝜑𝑋 ⊆ (ran 𝑋m 𝐶))
7 simpl 482 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝜑)
8 equid 2008 . . . . . . 7 𝑔 = 𝑔
9 rnuni 6170 . . . . . . . 8 ran 𝑋 = 𝑓𝑋 ran 𝑓
109oveq1i 7440 . . . . . . 7 (ran 𝑋m 𝐶) = ( 𝑓𝑋 ran 𝑓m 𝐶)
118, 10eleq12i 2831 . . . . . 6 (𝑔 ∈ (ran 𝑋m 𝐶) ↔ 𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶))
1211biimpi 216 . . . . 5 (𝑔 ∈ (ran 𝑋m 𝐶) → 𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶))
1312adantl 481 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶))
14 ovexd 7465 . . . . . . . . . 10 (𝜑 → (𝐵m 𝐶) ∈ V)
1514, 5ssexd 5329 . . . . . . . . 9 (𝜑𝑋 ∈ V)
16 rnexg 7924 . . . . . . . . . . 11 (𝑓𝑋 → ran 𝑓 ∈ V)
1716rgen 3060 . . . . . . . . . 10 𝑓𝑋 ran 𝑓 ∈ V
1817a1i 11 . . . . . . . . 9 (𝜑 → ∀𝑓𝑋 ran 𝑓 ∈ V)
19 iunexg 7986 . . . . . . . . 9 ((𝑋 ∈ V ∧ ∀𝑓𝑋 ran 𝑓 ∈ V) → 𝑓𝑋 ran 𝑓 ∈ V)
2015, 18, 19syl2anc 584 . . . . . . . 8 (𝜑 𝑓𝑋 ran 𝑓 ∈ V)
2120, 4elmapd 8878 . . . . . . 7 (𝜑 → (𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶) ↔ 𝑔:𝐶 𝑓𝑋 ran 𝑓))
2221biimpa 476 . . . . . 6 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → 𝑔:𝐶 𝑓𝑋 ran 𝑓)
23 unirnmapsn.A . . . . . . . . 9 (𝜑𝐴𝑉)
24 snidg 4664 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
2523, 24syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
2625, 1eleqtrrdi 2849 . . . . . . 7 (𝜑𝐴𝐶)
2726adantr 480 . . . . . 6 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → 𝐴𝐶)
2822, 27ffvelcdmd 7104 . . . . 5 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → (𝑔𝐴) ∈ 𝑓𝑋 ran 𝑓)
29 eliun 4999 . . . . 5 ((𝑔𝐴) ∈ 𝑓𝑋 ran 𝑓 ↔ ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
3028, 29sylib 218 . . . 4 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
317, 13, 30syl2anc 584 . . 3 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
32 elmapfn 8903 . . . . . 6 (𝑔 ∈ (ran 𝑋m 𝐶) → 𝑔 Fn 𝐶)
3332adantl 481 . . . . 5 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝑔 Fn 𝐶)
34 simp3 1137 . . . . . . . . . . 11 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) ∈ ran 𝑓)
35233ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝐴𝑉)
361oveq2i 7441 . . . . . . . . . . . . . . . . 17 (𝐵m 𝐶) = (𝐵m {𝐴})
375, 36sseqtrdi 4045 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ⊆ (𝐵m {𝐴}))
3837adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝑋 ⊆ (𝐵m {𝐴}))
39 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝑓𝑋)
4038, 39sseldd 3995 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋) → 𝑓 ∈ (𝐵m {𝐴}))
41 unirnmapsn.b . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑊)
4241adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝐵𝑊)
432a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → {𝐴} ∈ V)
4442, 43elmapd 8878 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋) → (𝑓 ∈ (𝐵m {𝐴}) ↔ 𝑓:{𝐴}⟶𝐵))
4540, 44mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶𝐵)
46453adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓:{𝐴}⟶𝐵)
4735, 46rnsnf 45126 . . . . . . . . . . 11 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → ran 𝑓 = {(𝑓𝐴)})
4834, 47eleqtrd 2840 . . . . . . . . . 10 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) ∈ {(𝑓𝐴)})
49 fvex 6919 . . . . . . . . . . 11 (𝑔𝐴) ∈ V
5049elsn 4645 . . . . . . . . . 10 ((𝑔𝐴) ∈ {(𝑓𝐴)} ↔ (𝑔𝐴) = (𝑓𝐴))
5148, 50sylib 218 . . . . . . . . 9 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) = (𝑓𝐴))
52513adant1r 1176 . . . . . . . 8 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) = (𝑓𝐴))
5323adantr 480 . . . . . . . . . 10 ((𝜑𝑔 Fn 𝐶) → 𝐴𝑉)
54533ad2ant1 1132 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝐴𝑉)
55 simp1r 1197 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔 Fn 𝐶)
5640, 36eleqtrrdi 2849 . . . . . . . . . . . 12 ((𝜑𝑓𝑋) → 𝑓 ∈ (𝐵m 𝐶))
57 elmapfn 8903 . . . . . . . . . . . 12 (𝑓 ∈ (𝐵m 𝐶) → 𝑓 Fn 𝐶)
5856, 57syl 17 . . . . . . . . . . 11 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐶)
5958adantlr 715 . . . . . . . . . 10 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋) → 𝑓 Fn 𝐶)
60593adant3 1131 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓 Fn 𝐶)
6154, 1, 55, 60fsneq 45148 . . . . . . . 8 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔 = 𝑓 ↔ (𝑔𝐴) = (𝑓𝐴)))
6252, 61mpbird 257 . . . . . . 7 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔 = 𝑓)
63 simp2 1136 . . . . . . 7 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓𝑋)
6462, 63eqeltrd 2838 . . . . . 6 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔𝑋)
65643exp 1118 . . . . 5 ((𝜑𝑔 Fn 𝐶) → (𝑓𝑋 → ((𝑔𝐴) ∈ ran 𝑓𝑔𝑋)))
667, 33, 65syl2anc 584 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → (𝑓𝑋 → ((𝑔𝐴) ∈ ran 𝑓𝑔𝑋)))
6766rexlimdv 3150 . . 3 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → (∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓𝑔𝑋))
6831, 67mpd 15 . 2 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝑔𝑋)
696, 68eqelssd 4016 1 (𝜑𝑋 = (ran 𝑋m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962  {csn 4630   cuni 4911   ciun 4995  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-map 8866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator