Step | Hyp | Ref
| Expression |
1 | | unirnmapsn.C |
. . . . 5
⊢ 𝐶 = {𝐴} |
2 | | snex 5354 |
. . . . 5
⊢ {𝐴} ∈ V |
3 | 1, 2 | eqeltri 2835 |
. . . 4
⊢ 𝐶 ∈ V |
4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐶 ∈ V) |
5 | | unirnmapsn.x |
. . 3
⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐶)) |
6 | 4, 5 | unirnmap 42748 |
. 2
⊢ (𝜑 → 𝑋 ⊆ (ran ∪
𝑋 ↑m 𝐶)) |
7 | | simpl 483 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → 𝜑) |
8 | | equid 2015 |
. . . . . . 7
⊢ 𝑔 = 𝑔 |
9 | | rnuni 6052 |
. . . . . . . 8
⊢ ran ∪ 𝑋 =
∪ 𝑓 ∈ 𝑋 ran 𝑓 |
10 | 9 | oveq1i 7285 |
. . . . . . 7
⊢ (ran
∪ 𝑋 ↑m 𝐶) = (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶) |
11 | 8, 10 | eleq12i 2831 |
. . . . . 6
⊢ (𝑔 ∈ (ran ∪ 𝑋
↑m 𝐶)
↔ 𝑔 ∈ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) |
12 | 11 | biimpi 215 |
. . . . 5
⊢ (𝑔 ∈ (ran ∪ 𝑋
↑m 𝐶)
→ 𝑔 ∈ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) |
13 | 12 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → 𝑔 ∈ (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) |
14 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ↑m 𝐶) ∈ V) |
15 | 14, 5 | ssexd 5248 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ V) |
16 | | rnexg 7751 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝑋 → ran 𝑓 ∈ V) |
17 | 16 | rgen 3074 |
. . . . . . . . . 10
⊢
∀𝑓 ∈
𝑋 ran 𝑓 ∈ V |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ∈ V) |
19 | | iunexg 7806 |
. . . . . . . . 9
⊢ ((𝑋 ∈ V ∧ ∀𝑓 ∈ 𝑋 ran 𝑓 ∈ V) → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ∈ V) |
20 | 15, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ∈ V) |
21 | 20, 4 | elmapd 8629 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∈ (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶) ↔ 𝑔:𝐶⟶∪
𝑓 ∈ 𝑋 ran 𝑓)) |
22 | 21 | biimpa 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) → 𝑔:𝐶⟶∪
𝑓 ∈ 𝑋 ran 𝑓) |
23 | | unirnmapsn.A |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
24 | | snidg 4595 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
26 | 25, 1 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝐶) |
27 | 26 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) → 𝐴 ∈ 𝐶) |
28 | 22, 27 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) → (𝑔‘𝐴) ∈ ∪
𝑓 ∈ 𝑋 ran 𝑓) |
29 | | eliun 4928 |
. . . . 5
⊢ ((𝑔‘𝐴) ∈ ∪
𝑓 ∈ 𝑋 ran 𝑓 ↔ ∃𝑓 ∈ 𝑋 (𝑔‘𝐴) ∈ ran 𝑓) |
30 | 28, 29 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (∪
𝑓 ∈ 𝑋 ran 𝑓 ↑m 𝐶)) → ∃𝑓 ∈ 𝑋 (𝑔‘𝐴) ∈ ran 𝑓) |
31 | 7, 13, 30 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → ∃𝑓 ∈ 𝑋 (𝑔‘𝐴) ∈ ran 𝑓) |
32 | | elmapfn 8653 |
. . . . . 6
⊢ (𝑔 ∈ (ran ∪ 𝑋
↑m 𝐶)
→ 𝑔 Fn 𝐶) |
33 | 32 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → 𝑔 Fn 𝐶) |
34 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → (𝑔‘𝐴) ∈ ran 𝑓) |
35 | 23 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝐴 ∈ 𝑉) |
36 | 1 | oveq2i 7286 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ↑m 𝐶) = (𝐵 ↑m {𝐴}) |
37 | 5, 36 | sseqtrdi 3971 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m {𝐴})) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑋 ⊆ (𝐵 ↑m {𝐴})) |
39 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ 𝑋) |
40 | 38, 39 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (𝐵 ↑m {𝐴})) |
41 | | unirnmapsn.b |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝐵 ∈ 𝑊) |
43 | 2 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → {𝐴} ∈ V) |
44 | 42, 43 | elmapd 8629 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝑓 ∈ (𝐵 ↑m {𝐴}) ↔ 𝑓:{𝐴}⟶𝐵)) |
45 | 40, 44 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶𝐵) |
46 | 45 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝑓:{𝐴}⟶𝐵) |
47 | 35, 46 | rnsnf 42721 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → ran 𝑓 = {(𝑓‘𝐴)}) |
48 | 34, 47 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → (𝑔‘𝐴) ∈ {(𝑓‘𝐴)}) |
49 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝑔‘𝐴) ∈ V |
50 | 49 | elsn 4576 |
. . . . . . . . . 10
⊢ ((𝑔‘𝐴) ∈ {(𝑓‘𝐴)} ↔ (𝑔‘𝐴) = (𝑓‘𝐴)) |
51 | 48, 50 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → (𝑔‘𝐴) = (𝑓‘𝐴)) |
52 | 51 | 3adant1r 1176 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → (𝑔‘𝐴) = (𝑓‘𝐴)) |
53 | 23 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 Fn 𝐶) → 𝐴 ∈ 𝑉) |
54 | 53 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝐴 ∈ 𝑉) |
55 | | simp1r 1197 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝑔 Fn 𝐶) |
56 | 40, 36 | eleqtrrdi 2850 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (𝐵 ↑m 𝐶)) |
57 | | elmapfn 8653 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐵 ↑m 𝐶) → 𝑓 Fn 𝐶) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 Fn 𝐶) |
59 | 58 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋) → 𝑓 Fn 𝐶) |
60 | 59 | 3adant3 1131 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝑓 Fn 𝐶) |
61 | 54, 1, 55, 60 | fsneq 42746 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → (𝑔 = 𝑓 ↔ (𝑔‘𝐴) = (𝑓‘𝐴))) |
62 | 52, 61 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝑔 = 𝑓) |
63 | | simp2 1136 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝑓 ∈ 𝑋) |
64 | 62, 63 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Fn 𝐶) ∧ 𝑓 ∈ 𝑋 ∧ (𝑔‘𝐴) ∈ ran 𝑓) → 𝑔 ∈ 𝑋) |
65 | 64 | 3exp 1118 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 Fn 𝐶) → (𝑓 ∈ 𝑋 → ((𝑔‘𝐴) ∈ ran 𝑓 → 𝑔 ∈ 𝑋))) |
66 | 7, 33, 65 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → (𝑓 ∈ 𝑋 → ((𝑔‘𝐴) ∈ ran 𝑓 → 𝑔 ∈ 𝑋))) |
67 | 66 | rexlimdv 3212 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → (∃𝑓 ∈ 𝑋 (𝑔‘𝐴) ∈ ran 𝑓 → 𝑔 ∈ 𝑋)) |
68 | 31, 67 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ (ran ∪
𝑋 ↑m 𝐶)) → 𝑔 ∈ 𝑋) |
69 | 6, 68 | eqelssd 3942 |
1
⊢ (𝜑 → 𝑋 = (ran ∪ 𝑋 ↑m 𝐶)) |