Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unirnmapsn Structured version   Visualization version   GIF version

Theorem unirnmapsn 44374
Description: Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
unirnmapsn.A (𝜑𝐴𝑉)
unirnmapsn.b (𝜑𝐵𝑊)
unirnmapsn.C 𝐶 = {𝐴}
unirnmapsn.x (𝜑𝑋 ⊆ (𝐵m 𝐶))
Assertion
Ref Expression
unirnmapsn (𝜑𝑋 = (ran 𝑋m 𝐶))

Proof of Theorem unirnmapsn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unirnmapsn.C . . . . 5 𝐶 = {𝐴}
2 snex 5431 . . . . 5 {𝐴} ∈ V
31, 2eqeltri 2828 . . . 4 𝐶 ∈ V
43a1i 11 . . 3 (𝜑𝐶 ∈ V)
5 unirnmapsn.x . . 3 (𝜑𝑋 ⊆ (𝐵m 𝐶))
64, 5unirnmap 44368 . 2 (𝜑𝑋 ⊆ (ran 𝑋m 𝐶))
7 simpl 482 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝜑)
8 equid 2014 . . . . . . 7 𝑔 = 𝑔
9 rnuni 6148 . . . . . . . 8 ran 𝑋 = 𝑓𝑋 ran 𝑓
109oveq1i 7422 . . . . . . 7 (ran 𝑋m 𝐶) = ( 𝑓𝑋 ran 𝑓m 𝐶)
118, 10eleq12i 2825 . . . . . 6 (𝑔 ∈ (ran 𝑋m 𝐶) ↔ 𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶))
1211biimpi 215 . . . . 5 (𝑔 ∈ (ran 𝑋m 𝐶) → 𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶))
1312adantl 481 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶))
14 ovexd 7447 . . . . . . . . . 10 (𝜑 → (𝐵m 𝐶) ∈ V)
1514, 5ssexd 5324 . . . . . . . . 9 (𝜑𝑋 ∈ V)
16 rnexg 7899 . . . . . . . . . . 11 (𝑓𝑋 → ran 𝑓 ∈ V)
1716rgen 3062 . . . . . . . . . 10 𝑓𝑋 ran 𝑓 ∈ V
1817a1i 11 . . . . . . . . 9 (𝜑 → ∀𝑓𝑋 ran 𝑓 ∈ V)
19 iunexg 7954 . . . . . . . . 9 ((𝑋 ∈ V ∧ ∀𝑓𝑋 ran 𝑓 ∈ V) → 𝑓𝑋 ran 𝑓 ∈ V)
2015, 18, 19syl2anc 583 . . . . . . . 8 (𝜑 𝑓𝑋 ran 𝑓 ∈ V)
2120, 4elmapd 8840 . . . . . . 7 (𝜑 → (𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶) ↔ 𝑔:𝐶 𝑓𝑋 ran 𝑓))
2221biimpa 476 . . . . . 6 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → 𝑔:𝐶 𝑓𝑋 ran 𝑓)
23 unirnmapsn.A . . . . . . . . 9 (𝜑𝐴𝑉)
24 snidg 4662 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
2523, 24syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
2625, 1eleqtrrdi 2843 . . . . . . 7 (𝜑𝐴𝐶)
2726adantr 480 . . . . . 6 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → 𝐴𝐶)
2822, 27ffvelcdmd 7087 . . . . 5 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → (𝑔𝐴) ∈ 𝑓𝑋 ran 𝑓)
29 eliun 5001 . . . . 5 ((𝑔𝐴) ∈ 𝑓𝑋 ran 𝑓 ↔ ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
3028, 29sylib 217 . . . 4 ((𝜑𝑔 ∈ ( 𝑓𝑋 ran 𝑓m 𝐶)) → ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
317, 13, 30syl2anc 583 . . 3 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → ∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓)
32 elmapfn 8865 . . . . . 6 (𝑔 ∈ (ran 𝑋m 𝐶) → 𝑔 Fn 𝐶)
3332adantl 481 . . . . 5 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝑔 Fn 𝐶)
34 simp3 1137 . . . . . . . . . . 11 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) ∈ ran 𝑓)
35233ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝐴𝑉)
361oveq2i 7423 . . . . . . . . . . . . . . . . 17 (𝐵m 𝐶) = (𝐵m {𝐴})
375, 36sseqtrdi 4032 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ⊆ (𝐵m {𝐴}))
3837adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝑋 ⊆ (𝐵m {𝐴}))
39 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝑓𝑋)
4038, 39sseldd 3983 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋) → 𝑓 ∈ (𝐵m {𝐴}))
41 unirnmapsn.b . . . . . . . . . . . . . . . 16 (𝜑𝐵𝑊)
4241adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → 𝐵𝑊)
432a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑓𝑋) → {𝐴} ∈ V)
4442, 43elmapd 8840 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑋) → (𝑓 ∈ (𝐵m {𝐴}) ↔ 𝑓:{𝐴}⟶𝐵))
4540, 44mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶𝐵)
46453adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓:{𝐴}⟶𝐵)
4735, 46rnsnf 44344 . . . . . . . . . . 11 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → ran 𝑓 = {(𝑓𝐴)})
4834, 47eleqtrd 2834 . . . . . . . . . 10 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) ∈ {(𝑓𝐴)})
49 fvex 6904 . . . . . . . . . . 11 (𝑔𝐴) ∈ V
5049elsn 4643 . . . . . . . . . 10 ((𝑔𝐴) ∈ {(𝑓𝐴)} ↔ (𝑔𝐴) = (𝑓𝐴))
5148, 50sylib 217 . . . . . . . . 9 ((𝜑𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) = (𝑓𝐴))
52513adant1r 1176 . . . . . . . 8 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔𝐴) = (𝑓𝐴))
5323adantr 480 . . . . . . . . . 10 ((𝜑𝑔 Fn 𝐶) → 𝐴𝑉)
54533ad2ant1 1132 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝐴𝑉)
55 simp1r 1197 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔 Fn 𝐶)
5640, 36eleqtrrdi 2843 . . . . . . . . . . . 12 ((𝜑𝑓𝑋) → 𝑓 ∈ (𝐵m 𝐶))
57 elmapfn 8865 . . . . . . . . . . . 12 (𝑓 ∈ (𝐵m 𝐶) → 𝑓 Fn 𝐶)
5856, 57syl 17 . . . . . . . . . . 11 ((𝜑𝑓𝑋) → 𝑓 Fn 𝐶)
5958adantlr 712 . . . . . . . . . 10 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋) → 𝑓 Fn 𝐶)
60593adant3 1131 . . . . . . . . 9 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓 Fn 𝐶)
6154, 1, 55, 60fsneq 44366 . . . . . . . 8 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → (𝑔 = 𝑓 ↔ (𝑔𝐴) = (𝑓𝐴)))
6252, 61mpbird 257 . . . . . . 7 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔 = 𝑓)
63 simp2 1136 . . . . . . 7 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑓𝑋)
6462, 63eqeltrd 2832 . . . . . 6 (((𝜑𝑔 Fn 𝐶) ∧ 𝑓𝑋 ∧ (𝑔𝐴) ∈ ran 𝑓) → 𝑔𝑋)
65643exp 1118 . . . . 5 ((𝜑𝑔 Fn 𝐶) → (𝑓𝑋 → ((𝑔𝐴) ∈ ran 𝑓𝑔𝑋)))
667, 33, 65syl2anc 583 . . . 4 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → (𝑓𝑋 → ((𝑔𝐴) ∈ ran 𝑓𝑔𝑋)))
6766rexlimdv 3152 . . 3 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → (∃𝑓𝑋 (𝑔𝐴) ∈ ran 𝑓𝑔𝑋))
6831, 67mpd 15 . 2 ((𝜑𝑔 ∈ (ran 𝑋m 𝐶)) → 𝑔𝑋)
696, 68eqelssd 4003 1 (𝜑𝑋 = (ran 𝑋m 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  wss 3948  {csn 4628   cuni 4908   ciun 4997  ran crn 5677   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator