MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1n0mnd Structured version   Visualization version   GIF version

Theorem smndex1n0mnd 18820
Description: The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1n0mnd (0g𝑀) ∉ 𝐵
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1n0mnd
StepHypRef Expression
1 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
2 nnnn0 12388 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = (( I ↾ ℕ0)‘𝑁))
41, 2ax-mp 5 . . . . . . . . . . . . 13 𝑁 ∈ ℕ0
5 fvresi 7107 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (( I ↾ ℕ0)‘𝑁) = 𝑁)
64, 5ax-mp 5 . . . . . . . . . . . 12 (( I ↾ ℕ0)‘𝑁) = 𝑁
73, 6eqtrdi 2782 . . . . . . . . . . 11 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = 𝑁)
8 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐼𝑥) = (𝐼𝑁))
97, 8eqeq12d 2747 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ 𝑁 = (𝐼𝑁)))
109notbid 318 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
1110adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
12 nnne0 12159 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1312neneqd 2933 . . . . . . . . 9 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
14 smndex1ibas.i . . . . . . . . . . 11 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
15 oveq1 7353 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥 mod 𝑁) = (𝑁 mod 𝑁))
16 nnrp 12902 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
17 modid0 13801 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
1915, 18sylan9eqr 2788 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (𝑥 mod 𝑁) = 0)
20 c0ex 11106 . . . . . . . . . . . 12 0 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ∈ V)
2214, 19, 2, 21fvmptd2 6937 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝐼𝑁) = 0)
2322eqeq2d 2742 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 = (𝐼𝑁) ↔ 𝑁 = 0))
2413, 23mtbird 325 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 𝑁 = (𝐼𝑁))
252, 11, 24rspcedvd 3574 . . . . . . 7 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
261, 25ax-mp 5 . . . . . 6 𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
27 rexnal 3084 . . . . . 6 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
2826, 27mpbi 230 . . . . 5 ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
29 fnresi 6610 . . . . . 6 ( I ↾ ℕ0) Fn ℕ0
30 ovex 7379 . . . . . . 7 (𝑥 mod 𝑁) ∈ V
3130, 14fnmpti 6624 . . . . . 6 𝐼 Fn ℕ0
32 eqfnfv 6964 . . . . . 6 ((( I ↾ ℕ0) Fn ℕ0𝐼 Fn ℕ0) → (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)))
3329, 31, 32mp2an 692 . . . . 5 (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
3428, 33mtbir 323 . . . 4 ¬ ( I ↾ ℕ0) = 𝐼
354a1i 11 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ0)
36 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑛)‘𝑁))
377, 36eqeq12d 2747 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ 𝑁 = ((𝐺𝑛)‘𝑁)))
3837notbid 318 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
3938adantl 481 . . . . . . . 8 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
40 fzonel 13573 . . . . . . . . . . 11 ¬ 𝑁 ∈ (0..^𝑁)
41 eleq1 2819 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4241eqcoms 2739 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4340, 42mtbiri 327 . . . . . . . . . 10 (𝑁 = 𝑛 → ¬ 𝑛 ∈ (0..^𝑁))
4443con2i 139 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑛)
45 nn0ex 12387 . . . . . . . . . . . . 13 0 ∈ V
4645mptex 7157 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0𝑛) ∈ V
47 smndex1ibas.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
4847fvmpt2 6940 . . . . . . . . . . . 12 ((𝑛 ∈ (0..^𝑁) ∧ (𝑥 ∈ ℕ0𝑛) ∈ V) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
4946, 48mpan2 691 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
50 eqidd 2732 . . . . . . . . . . 11 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → 𝑛 = 𝑛)
51 id 22 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ (0..^𝑁))
5249, 50, 35, 51fvmptd 6936 . . . . . . . . . 10 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛)‘𝑁) = 𝑛)
5352eqeq2d 2742 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → (𝑁 = ((𝐺𝑛)‘𝑁) ↔ 𝑁 = 𝑛))
5444, 53mtbird 325 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = ((𝐺𝑛)‘𝑁))
5535, 39, 54rspcedvd 3574 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
56 rexnal 3084 . . . . . . 7 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
5755, 56sylib 218 . . . . . 6 (𝑛 ∈ (0..^𝑁) → ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
58 vex 3440 . . . . . . . . 9 𝑛 ∈ V
59 eqid 2731 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝑛)
6058, 59fnmpti 6624 . . . . . . . 8 (𝑥 ∈ ℕ0𝑛) Fn ℕ0
6149fneq1d 6574 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛) Fn ℕ0 ↔ (𝑥 ∈ ℕ0𝑛) Fn ℕ0))
6260, 61mpbiri 258 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) Fn ℕ0)
63 eqfnfv 6964 . . . . . . 7 ((( I ↾ ℕ0) Fn ℕ0 ∧ (𝐺𝑛) Fn ℕ0) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6429, 62, 63sylancr 587 . . . . . 6 (𝑛 ∈ (0..^𝑁) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6557, 64mtbird 325 . . . . 5 (𝑛 ∈ (0..^𝑁) → ¬ ( I ↾ ℕ0) = (𝐺𝑛))
6665nrex 3060 . . . 4 ¬ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)
6734, 66pm3.2ni 880 . . 3 ¬ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
68 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
6968efmndid 18796 . . . . . . 7 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
7045, 69ax-mp 5 . . . . . 6 ( I ↾ ℕ0) = (0g𝑀)
7170eqcomi 2740 . . . . 5 (0g𝑀) = ( I ↾ ℕ0)
72 smndex1mgm.b . . . . 5 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
7371, 72eleq12i 2824 . . . 4 ((0g𝑀) ∈ 𝐵 ↔ ( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
74 elun 4100 . . . . 5 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75 resiexg 7842 . . . . . . . 8 (ℕ0 ∈ V → ( I ↾ ℕ0) ∈ V)
7645, 75ax-mp 5 . . . . . . 7 ( I ↾ ℕ0) ∈ V
7776elsn 4588 . . . . . 6 (( I ↾ ℕ0) ∈ {𝐼} ↔ ( I ↾ ℕ0) = 𝐼)
78 eliun 4943 . . . . . . 7 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)})
7976elsn 4588 . . . . . . . 8 (( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ( I ↾ ℕ0) = (𝐺𝑛))
8079rexbii 3079 . . . . . . 7 (∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8178, 80bitri 275 . . . . . 6 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8277, 81orbi12i 914 . . . . 5 ((( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8374, 82bitri 275 . . . 4 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8473, 83bitri 275 . . 3 ((0g𝑀) ∈ 𝐵 ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8567, 84mtbir 323 . 2 ¬ (0g𝑀) ∈ 𝐵
8685nelir 3035 1 (0g𝑀) ∉ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wnel 3032  wral 3047  wrex 3056  Vcvv 3436  cun 3895  {csn 4573   ciun 4939  cmpt 5170   I cid 5508  cres 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346  0cc0 11006  cn 12125  0cn0 12381  +crp 12890  ..^cfzo 13554   mod cmo 13773  s cress 17141  0gc0g 17343  EndoFMndcefmnd 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-tset 17180  df-0g 17345  df-efmnd 18777
This theorem is referenced by:  nsmndex1  18821
  Copyright terms: Public domain W3C validator