MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1n0mnd Structured version   Visualization version   GIF version

Theorem smndex1n0mnd 18937
Description: The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1n0mnd (0g𝑀) ∉ 𝐵
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1n0mnd
StepHypRef Expression
1 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
2 nnnn0 12530 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = (( I ↾ ℕ0)‘𝑁))
41, 2ax-mp 5 . . . . . . . . . . . . 13 𝑁 ∈ ℕ0
5 fvresi 7192 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (( I ↾ ℕ0)‘𝑁) = 𝑁)
64, 5ax-mp 5 . . . . . . . . . . . 12 (( I ↾ ℕ0)‘𝑁) = 𝑁
73, 6eqtrdi 2790 . . . . . . . . . . 11 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = 𝑁)
8 fveq2 6906 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐼𝑥) = (𝐼𝑁))
97, 8eqeq12d 2750 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ 𝑁 = (𝐼𝑁)))
109notbid 318 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
1110adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
12 nnne0 12297 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1312neneqd 2942 . . . . . . . . 9 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
14 smndex1ibas.i . . . . . . . . . . 11 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
15 oveq1 7437 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥 mod 𝑁) = (𝑁 mod 𝑁))
16 nnrp 13043 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
17 modid0 13933 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
1915, 18sylan9eqr 2796 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (𝑥 mod 𝑁) = 0)
20 c0ex 11252 . . . . . . . . . . . 12 0 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ∈ V)
2214, 19, 2, 21fvmptd2 7023 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝐼𝑁) = 0)
2322eqeq2d 2745 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 = (𝐼𝑁) ↔ 𝑁 = 0))
2413, 23mtbird 325 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 𝑁 = (𝐼𝑁))
252, 11, 24rspcedvd 3623 . . . . . . 7 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
261, 25ax-mp 5 . . . . . 6 𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
27 rexnal 3097 . . . . . 6 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
2826, 27mpbi 230 . . . . 5 ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
29 fnresi 6697 . . . . . 6 ( I ↾ ℕ0) Fn ℕ0
30 ovex 7463 . . . . . . 7 (𝑥 mod 𝑁) ∈ V
3130, 14fnmpti 6711 . . . . . 6 𝐼 Fn ℕ0
32 eqfnfv 7050 . . . . . 6 ((( I ↾ ℕ0) Fn ℕ0𝐼 Fn ℕ0) → (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)))
3329, 31, 32mp2an 692 . . . . 5 (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
3428, 33mtbir 323 . . . 4 ¬ ( I ↾ ℕ0) = 𝐼
354a1i 11 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ0)
36 fveq2 6906 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑛)‘𝑁))
377, 36eqeq12d 2750 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ 𝑁 = ((𝐺𝑛)‘𝑁)))
3837notbid 318 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
3938adantl 481 . . . . . . . 8 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
40 fzonel 13709 . . . . . . . . . . 11 ¬ 𝑁 ∈ (0..^𝑁)
41 eleq1 2826 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4241eqcoms 2742 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4340, 42mtbiri 327 . . . . . . . . . 10 (𝑁 = 𝑛 → ¬ 𝑛 ∈ (0..^𝑁))
4443con2i 139 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑛)
45 nn0ex 12529 . . . . . . . . . . . . 13 0 ∈ V
4645mptex 7242 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0𝑛) ∈ V
47 smndex1ibas.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
4847fvmpt2 7026 . . . . . . . . . . . 12 ((𝑛 ∈ (0..^𝑁) ∧ (𝑥 ∈ ℕ0𝑛) ∈ V) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
4946, 48mpan2 691 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
50 eqidd 2735 . . . . . . . . . . 11 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → 𝑛 = 𝑛)
51 id 22 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ (0..^𝑁))
5249, 50, 35, 51fvmptd 7022 . . . . . . . . . 10 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛)‘𝑁) = 𝑛)
5352eqeq2d 2745 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → (𝑁 = ((𝐺𝑛)‘𝑁) ↔ 𝑁 = 𝑛))
5444, 53mtbird 325 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = ((𝐺𝑛)‘𝑁))
5535, 39, 54rspcedvd 3623 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
56 rexnal 3097 . . . . . . 7 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
5755, 56sylib 218 . . . . . 6 (𝑛 ∈ (0..^𝑁) → ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
58 vex 3481 . . . . . . . . 9 𝑛 ∈ V
59 eqid 2734 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝑛)
6058, 59fnmpti 6711 . . . . . . . 8 (𝑥 ∈ ℕ0𝑛) Fn ℕ0
6149fneq1d 6661 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛) Fn ℕ0 ↔ (𝑥 ∈ ℕ0𝑛) Fn ℕ0))
6260, 61mpbiri 258 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) Fn ℕ0)
63 eqfnfv 7050 . . . . . . 7 ((( I ↾ ℕ0) Fn ℕ0 ∧ (𝐺𝑛) Fn ℕ0) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6429, 62, 63sylancr 587 . . . . . 6 (𝑛 ∈ (0..^𝑁) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6557, 64mtbird 325 . . . . 5 (𝑛 ∈ (0..^𝑁) → ¬ ( I ↾ ℕ0) = (𝐺𝑛))
6665nrex 3071 . . . 4 ¬ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)
6734, 66pm3.2ni 880 . . 3 ¬ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
68 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
6968efmndid 18913 . . . . . . 7 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
7045, 69ax-mp 5 . . . . . 6 ( I ↾ ℕ0) = (0g𝑀)
7170eqcomi 2743 . . . . 5 (0g𝑀) = ( I ↾ ℕ0)
72 smndex1mgm.b . . . . 5 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
7371, 72eleq12i 2831 . . . 4 ((0g𝑀) ∈ 𝐵 ↔ ( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
74 elun 4162 . . . . 5 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75 resiexg 7934 . . . . . . . 8 (ℕ0 ∈ V → ( I ↾ ℕ0) ∈ V)
7645, 75ax-mp 5 . . . . . . 7 ( I ↾ ℕ0) ∈ V
7776elsn 4645 . . . . . 6 (( I ↾ ℕ0) ∈ {𝐼} ↔ ( I ↾ ℕ0) = 𝐼)
78 eliun 4999 . . . . . . 7 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)})
7976elsn 4645 . . . . . . . 8 (( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ( I ↾ ℕ0) = (𝐺𝑛))
8079rexbii 3091 . . . . . . 7 (∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8178, 80bitri 275 . . . . . 6 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8277, 81orbi12i 914 . . . . 5 ((( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8374, 82bitri 275 . . . 4 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8473, 83bitri 275 . . 3 ((0g𝑀) ∈ 𝐵 ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8567, 84mtbir 323 . 2 ¬ (0g𝑀) ∈ 𝐵
8685nelir 3046 1 (0g𝑀) ∉ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wnel 3043  wral 3058  wrex 3067  Vcvv 3477  cun 3960  {csn 4630   ciun 4995  cmpt 5230   I cid 5581  cres 5690   Fn wfn 6557  cfv 6562  (class class class)co 7430  0cc0 11152  cn 12263  0cn0 12523  +crp 13031  ..^cfzo 13690   mod cmo 13905  s cress 17273  0gc0g 17485  EndoFMndcefmnd 18893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-tset 17316  df-0g 17487  df-efmnd 18894
This theorem is referenced by:  nsmndex1  18938
  Copyright terms: Public domain W3C validator