MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1n0mnd Structured version   Visualization version   GIF version

Theorem smndex1n0mnd 18466
Description: The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1n0mnd (0g𝑀) ∉ 𝐵
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1n0mnd
StepHypRef Expression
1 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
2 nnnn0 12170 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fveq2 6756 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = (( I ↾ ℕ0)‘𝑁))
41, 2ax-mp 5 . . . . . . . . . . . . 13 𝑁 ∈ ℕ0
5 fvresi 7027 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (( I ↾ ℕ0)‘𝑁) = 𝑁)
64, 5ax-mp 5 . . . . . . . . . . . 12 (( I ↾ ℕ0)‘𝑁) = 𝑁
73, 6eqtrdi 2795 . . . . . . . . . . 11 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = 𝑁)
8 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐼𝑥) = (𝐼𝑁))
97, 8eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ 𝑁 = (𝐼𝑁)))
109notbid 317 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
1110adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
12 nnne0 11937 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1312neneqd 2947 . . . . . . . . 9 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
14 smndex1ibas.i . . . . . . . . . . 11 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
15 oveq1 7262 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥 mod 𝑁) = (𝑁 mod 𝑁))
16 nnrp 12670 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
17 modid0 13545 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
1915, 18sylan9eqr 2801 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (𝑥 mod 𝑁) = 0)
20 c0ex 10900 . . . . . . . . . . . 12 0 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ∈ V)
2214, 19, 2, 21fvmptd2 6865 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝐼𝑁) = 0)
2322eqeq2d 2749 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 = (𝐼𝑁) ↔ 𝑁 = 0))
2413, 23mtbird 324 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 𝑁 = (𝐼𝑁))
252, 11, 24rspcedvd 3555 . . . . . . 7 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
261, 25ax-mp 5 . . . . . 6 𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
27 rexnal 3165 . . . . . 6 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
2826, 27mpbi 229 . . . . 5 ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
29 fnresi 6545 . . . . . 6 ( I ↾ ℕ0) Fn ℕ0
30 ovex 7288 . . . . . . 7 (𝑥 mod 𝑁) ∈ V
3130, 14fnmpti 6560 . . . . . 6 𝐼 Fn ℕ0
32 eqfnfv 6891 . . . . . 6 ((( I ↾ ℕ0) Fn ℕ0𝐼 Fn ℕ0) → (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)))
3329, 31, 32mp2an 688 . . . . 5 (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
3428, 33mtbir 322 . . . 4 ¬ ( I ↾ ℕ0) = 𝐼
354a1i 11 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ0)
36 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑛)‘𝑁))
377, 36eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ 𝑁 = ((𝐺𝑛)‘𝑁)))
3837notbid 317 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
3938adantl 481 . . . . . . . 8 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
40 fzonel 13329 . . . . . . . . . . 11 ¬ 𝑁 ∈ (0..^𝑁)
41 eleq1 2826 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4241eqcoms 2746 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4340, 42mtbiri 326 . . . . . . . . . 10 (𝑁 = 𝑛 → ¬ 𝑛 ∈ (0..^𝑁))
4443con2i 139 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑛)
45 nn0ex 12169 . . . . . . . . . . . . 13 0 ∈ V
4645mptex 7081 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0𝑛) ∈ V
47 smndex1ibas.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
4847fvmpt2 6868 . . . . . . . . . . . 12 ((𝑛 ∈ (0..^𝑁) ∧ (𝑥 ∈ ℕ0𝑛) ∈ V) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
4946, 48mpan2 687 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
50 eqidd 2739 . . . . . . . . . . 11 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → 𝑛 = 𝑛)
51 id 22 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ (0..^𝑁))
5249, 50, 35, 51fvmptd 6864 . . . . . . . . . 10 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛)‘𝑁) = 𝑛)
5352eqeq2d 2749 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → (𝑁 = ((𝐺𝑛)‘𝑁) ↔ 𝑁 = 𝑛))
5444, 53mtbird 324 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = ((𝐺𝑛)‘𝑁))
5535, 39, 54rspcedvd 3555 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
56 rexnal 3165 . . . . . . 7 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
5755, 56sylib 217 . . . . . 6 (𝑛 ∈ (0..^𝑁) → ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
58 vex 3426 . . . . . . . . 9 𝑛 ∈ V
59 eqid 2738 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝑛)
6058, 59fnmpti 6560 . . . . . . . 8 (𝑥 ∈ ℕ0𝑛) Fn ℕ0
6149fneq1d 6510 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛) Fn ℕ0 ↔ (𝑥 ∈ ℕ0𝑛) Fn ℕ0))
6260, 61mpbiri 257 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) Fn ℕ0)
63 eqfnfv 6891 . . . . . . 7 ((( I ↾ ℕ0) Fn ℕ0 ∧ (𝐺𝑛) Fn ℕ0) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6429, 62, 63sylancr 586 . . . . . 6 (𝑛 ∈ (0..^𝑁) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6557, 64mtbird 324 . . . . 5 (𝑛 ∈ (0..^𝑁) → ¬ ( I ↾ ℕ0) = (𝐺𝑛))
6665nrex 3196 . . . 4 ¬ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)
6734, 66pm3.2ni 877 . . 3 ¬ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
68 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
6968efmndid 18442 . . . . . . 7 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
7045, 69ax-mp 5 . . . . . 6 ( I ↾ ℕ0) = (0g𝑀)
7170eqcomi 2747 . . . . 5 (0g𝑀) = ( I ↾ ℕ0)
72 smndex1mgm.b . . . . 5 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
7371, 72eleq12i 2831 . . . 4 ((0g𝑀) ∈ 𝐵 ↔ ( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
74 elun 4079 . . . . 5 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75 resiexg 7735 . . . . . . . 8 (ℕ0 ∈ V → ( I ↾ ℕ0) ∈ V)
7645, 75ax-mp 5 . . . . . . 7 ( I ↾ ℕ0) ∈ V
7776elsn 4573 . . . . . 6 (( I ↾ ℕ0) ∈ {𝐼} ↔ ( I ↾ ℕ0) = 𝐼)
78 eliun 4925 . . . . . . 7 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)})
7976elsn 4573 . . . . . . . 8 (( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ( I ↾ ℕ0) = (𝐺𝑛))
8079rexbii 3177 . . . . . . 7 (∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8178, 80bitri 274 . . . . . 6 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8277, 81orbi12i 911 . . . . 5 ((( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8374, 82bitri 274 . . . 4 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8473, 83bitri 274 . . 3 ((0g𝑀) ∈ 𝐵 ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8567, 84mtbir 322 . 2 ¬ (0g𝑀) ∈ 𝐵
8685nelir 3051 1 (0g𝑀) ∉ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wnel 3048  wral 3063  wrex 3064  Vcvv 3422  cun 3881  {csn 4558   ciun 4921  cmpt 5153   I cid 5479  cres 5582   Fn wfn 6413  cfv 6418  (class class class)co 7255  0cc0 10802  cn 11903  0cn0 12163  +crp 12659  ..^cfzo 13311   mod cmo 13517  s cress 16867  0gc0g 17067  EndoFMndcefmnd 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-0g 17069  df-efmnd 18423
This theorem is referenced by:  nsmndex1  18467
  Copyright terms: Public domain W3C validator