MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1n0mnd Structured version   Visualization version   GIF version

Theorem smndex1n0mnd 18722
Description: The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1n0mnd (0g𝑀) ∉ 𝐵
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1n0mnd
StepHypRef Expression
1 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
2 nnnn0 12420 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fveq2 6842 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = (( I ↾ ℕ0)‘𝑁))
41, 2ax-mp 5 . . . . . . . . . . . . 13 𝑁 ∈ ℕ0
5 fvresi 7119 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (( I ↾ ℕ0)‘𝑁) = 𝑁)
64, 5ax-mp 5 . . . . . . . . . . . 12 (( I ↾ ℕ0)‘𝑁) = 𝑁
73, 6eqtrdi 2792 . . . . . . . . . . 11 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = 𝑁)
8 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐼𝑥) = (𝐼𝑁))
97, 8eqeq12d 2752 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ 𝑁 = (𝐼𝑁)))
109notbid 317 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
1110adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
12 nnne0 12187 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1312neneqd 2948 . . . . . . . . 9 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
14 smndex1ibas.i . . . . . . . . . . 11 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
15 oveq1 7364 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥 mod 𝑁) = (𝑁 mod 𝑁))
16 nnrp 12926 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
17 modid0 13802 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
1915, 18sylan9eqr 2798 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (𝑥 mod 𝑁) = 0)
20 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ∈ V)
2214, 19, 2, 21fvmptd2 6956 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝐼𝑁) = 0)
2322eqeq2d 2747 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 = (𝐼𝑁) ↔ 𝑁 = 0))
2413, 23mtbird 324 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 𝑁 = (𝐼𝑁))
252, 11, 24rspcedvd 3583 . . . . . . 7 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
261, 25ax-mp 5 . . . . . 6 𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
27 rexnal 3103 . . . . . 6 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
2826, 27mpbi 229 . . . . 5 ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
29 fnresi 6630 . . . . . 6 ( I ↾ ℕ0) Fn ℕ0
30 ovex 7390 . . . . . . 7 (𝑥 mod 𝑁) ∈ V
3130, 14fnmpti 6644 . . . . . 6 𝐼 Fn ℕ0
32 eqfnfv 6982 . . . . . 6 ((( I ↾ ℕ0) Fn ℕ0𝐼 Fn ℕ0) → (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)))
3329, 31, 32mp2an 690 . . . . 5 (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
3428, 33mtbir 322 . . . 4 ¬ ( I ↾ ℕ0) = 𝐼
354a1i 11 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ0)
36 fveq2 6842 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑛)‘𝑁))
377, 36eqeq12d 2752 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ 𝑁 = ((𝐺𝑛)‘𝑁)))
3837notbid 317 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
3938adantl 482 . . . . . . . 8 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
40 fzonel 13586 . . . . . . . . . . 11 ¬ 𝑁 ∈ (0..^𝑁)
41 eleq1 2825 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4241eqcoms 2744 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4340, 42mtbiri 326 . . . . . . . . . 10 (𝑁 = 𝑛 → ¬ 𝑛 ∈ (0..^𝑁))
4443con2i 139 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑛)
45 nn0ex 12419 . . . . . . . . . . . . 13 0 ∈ V
4645mptex 7173 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0𝑛) ∈ V
47 smndex1ibas.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
4847fvmpt2 6959 . . . . . . . . . . . 12 ((𝑛 ∈ (0..^𝑁) ∧ (𝑥 ∈ ℕ0𝑛) ∈ V) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
4946, 48mpan2 689 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
50 eqidd 2737 . . . . . . . . . . 11 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → 𝑛 = 𝑛)
51 id 22 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ (0..^𝑁))
5249, 50, 35, 51fvmptd 6955 . . . . . . . . . 10 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛)‘𝑁) = 𝑛)
5352eqeq2d 2747 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → (𝑁 = ((𝐺𝑛)‘𝑁) ↔ 𝑁 = 𝑛))
5444, 53mtbird 324 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = ((𝐺𝑛)‘𝑁))
5535, 39, 54rspcedvd 3583 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
56 rexnal 3103 . . . . . . 7 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
5755, 56sylib 217 . . . . . 6 (𝑛 ∈ (0..^𝑁) → ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
58 vex 3449 . . . . . . . . 9 𝑛 ∈ V
59 eqid 2736 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝑛)
6058, 59fnmpti 6644 . . . . . . . 8 (𝑥 ∈ ℕ0𝑛) Fn ℕ0
6149fneq1d 6595 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛) Fn ℕ0 ↔ (𝑥 ∈ ℕ0𝑛) Fn ℕ0))
6260, 61mpbiri 257 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) Fn ℕ0)
63 eqfnfv 6982 . . . . . . 7 ((( I ↾ ℕ0) Fn ℕ0 ∧ (𝐺𝑛) Fn ℕ0) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6429, 62, 63sylancr 587 . . . . . 6 (𝑛 ∈ (0..^𝑁) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6557, 64mtbird 324 . . . . 5 (𝑛 ∈ (0..^𝑁) → ¬ ( I ↾ ℕ0) = (𝐺𝑛))
6665nrex 3077 . . . 4 ¬ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)
6734, 66pm3.2ni 879 . . 3 ¬ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
68 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
6968efmndid 18698 . . . . . . 7 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
7045, 69ax-mp 5 . . . . . 6 ( I ↾ ℕ0) = (0g𝑀)
7170eqcomi 2745 . . . . 5 (0g𝑀) = ( I ↾ ℕ0)
72 smndex1mgm.b . . . . 5 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
7371, 72eleq12i 2830 . . . 4 ((0g𝑀) ∈ 𝐵 ↔ ( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
74 elun 4108 . . . . 5 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75 resiexg 7851 . . . . . . . 8 (ℕ0 ∈ V → ( I ↾ ℕ0) ∈ V)
7645, 75ax-mp 5 . . . . . . 7 ( I ↾ ℕ0) ∈ V
7776elsn 4601 . . . . . 6 (( I ↾ ℕ0) ∈ {𝐼} ↔ ( I ↾ ℕ0) = 𝐼)
78 eliun 4958 . . . . . . 7 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)})
7976elsn 4601 . . . . . . . 8 (( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ( I ↾ ℕ0) = (𝐺𝑛))
8079rexbii 3097 . . . . . . 7 (∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8178, 80bitri 274 . . . . . 6 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8277, 81orbi12i 913 . . . . 5 ((( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8374, 82bitri 274 . . . 4 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8473, 83bitri 274 . . 3 ((0g𝑀) ∈ 𝐵 ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8567, 84mtbir 322 . 2 ¬ (0g𝑀) ∈ 𝐵
8685nelir 3052 1 (0g𝑀) ∉ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wnel 3049  wral 3064  wrex 3073  Vcvv 3445  cun 3908  {csn 4586   ciun 4954  cmpt 5188   I cid 5530  cres 5635   Fn wfn 6491  cfv 6496  (class class class)co 7357  0cc0 11051  cn 12153  0cn0 12413  +crp 12915  ..^cfzo 13567   mod cmo 13774  s cress 17112  0gc0g 17321  EndoFMndcefmnd 18678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-tset 17152  df-0g 17323  df-efmnd 18679
This theorem is referenced by:  nsmndex1  18723
  Copyright terms: Public domain W3C validator