Proof of Theorem smndex1n0mnd
Step | Hyp | Ref
| Expression |
1 | | smndex1ibas.n |
. . . . . . 7
⊢ 𝑁 ∈ ℕ |
2 | | nnnn0 12240 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → (( I ↾
ℕ0)‘𝑥) = (( I ↾
ℕ0)‘𝑁)) |
4 | 1, 2 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 𝑁 ∈
ℕ0 |
5 | | fvresi 7045 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (( I ↾ ℕ0)‘𝑁) = 𝑁) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (( I
↾ ℕ0)‘𝑁) = 𝑁 |
7 | 3, 6 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (( I ↾
ℕ0)‘𝑥) = 𝑁) |
8 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → (𝐼‘𝑥) = (𝐼‘𝑁)) |
9 | 7, 8 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → ((( I ↾
ℕ0)‘𝑥) = (𝐼‘𝑥) ↔ 𝑁 = (𝐼‘𝑁))) |
10 | 9 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (¬ (( I ↾
ℕ0)‘𝑥) = (𝐼‘𝑥) ↔ ¬ 𝑁 = (𝐼‘𝑁))) |
11 | 10 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (¬ (( I ↾
ℕ0)‘𝑥) = (𝐼‘𝑥) ↔ ¬ 𝑁 = (𝐼‘𝑁))) |
12 | | nnne0 12007 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
13 | 12 | neneqd 2948 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ¬
𝑁 = 0) |
14 | | smndex1ibas.i |
. . . . . . . . . . 11
⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
15 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑁 → (𝑥 mod 𝑁) = (𝑁 mod 𝑁)) |
16 | | nnrp 12741 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
17 | | modid0 13617 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℝ+
→ (𝑁 mod 𝑁) = 0) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0) |
19 | 15, 18 | sylan9eqr 2800 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (𝑥 mod 𝑁) = 0) |
20 | | c0ex 10969 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
21 | 20 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 0 ∈
V) |
22 | 14, 19, 2, 21 | fvmptd2 6883 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝐼‘𝑁) = 0) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 = (𝐼‘𝑁) ↔ 𝑁 = 0)) |
24 | 13, 23 | mtbird 325 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ¬
𝑁 = (𝐼‘𝑁)) |
25 | 2, 11, 24 | rspcedvd 3563 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
∃𝑥 ∈
ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼‘𝑥)) |
26 | 1, 25 | ax-mp 5 |
. . . . . 6
⊢
∃𝑥 ∈
ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼‘𝑥) |
27 | | rexnal 3169 |
. . . . . 6
⊢
(∃𝑥 ∈
ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾
ℕ0)‘𝑥) = (𝐼‘𝑥)) |
28 | 26, 27 | mpbi 229 |
. . . . 5
⊢ ¬
∀𝑥 ∈
ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼‘𝑥) |
29 | | fnresi 6561 |
. . . . . 6
⊢ ( I
↾ ℕ0) Fn ℕ0 |
30 | | ovex 7308 |
. . . . . . 7
⊢ (𝑥 mod 𝑁) ∈ V |
31 | 30, 14 | fnmpti 6576 |
. . . . . 6
⊢ 𝐼 Fn
ℕ0 |
32 | | eqfnfv 6909 |
. . . . . 6
⊢ ((( I
↾ ℕ0) Fn ℕ0 ∧ 𝐼 Fn ℕ0) → (( I ↾
ℕ0) = 𝐼
↔ ∀𝑥 ∈
ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼‘𝑥))) |
33 | 29, 31, 32 | mp2an 689 |
. . . . 5
⊢ (( I
↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾
ℕ0)‘𝑥) = (𝐼‘𝑥)) |
34 | 28, 33 | mtbir 323 |
. . . 4
⊢ ¬ (
I ↾ ℕ0) = 𝐼 |
35 | 4 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ (0..^𝑁) → 𝑁 ∈
ℕ0) |
36 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑁 → ((𝐺‘𝑛)‘𝑥) = ((𝐺‘𝑛)‘𝑁)) |
37 | 7, 36 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → ((( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥) ↔ 𝑁 = ((𝐺‘𝑛)‘𝑁))) |
38 | 37 | notbid 318 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (¬ (( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺‘𝑛)‘𝑁))) |
39 | 38 | adantl 482 |
. . . . . . . 8
⊢ ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → (¬ (( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺‘𝑛)‘𝑁))) |
40 | | fzonel 13401 |
. . . . . . . . . . 11
⊢ ¬
𝑁 ∈ (0..^𝑁) |
41 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁))) |
42 | 41 | eqcoms 2746 |
. . . . . . . . . . 11
⊢ (𝑁 = 𝑛 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁))) |
43 | 40, 42 | mtbiri 327 |
. . . . . . . . . 10
⊢ (𝑁 = 𝑛 → ¬ 𝑛 ∈ (0..^𝑁)) |
44 | 43 | con2i 139 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑛) |
45 | | nn0ex 12239 |
. . . . . . . . . . . . 13
⊢
ℕ0 ∈ V |
46 | 45 | mptex 7099 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ0
↦ 𝑛) ∈
V |
47 | | smndex1ibas.g |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
48 | 47 | fvmpt2 6886 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ (0..^𝑁) ∧ (𝑥 ∈ ℕ0 ↦ 𝑛) ∈ V) → (𝐺‘𝑛) = (𝑥 ∈ ℕ0 ↦ 𝑛)) |
49 | 46, 48 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0..^𝑁) → (𝐺‘𝑛) = (𝑥 ∈ ℕ0 ↦ 𝑛)) |
50 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → 𝑛 = 𝑛) |
51 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ (0..^𝑁)) |
52 | 49, 50, 35, 51 | fvmptd 6882 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (0..^𝑁) → ((𝐺‘𝑛)‘𝑁) = 𝑛) |
53 | 52 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0..^𝑁) → (𝑁 = ((𝐺‘𝑛)‘𝑁) ↔ 𝑁 = 𝑛)) |
54 | 44, 53 | mtbird 325 |
. . . . . . . 8
⊢ (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = ((𝐺‘𝑛)‘𝑁)) |
55 | 35, 39, 54 | rspcedvd 3563 |
. . . . . . 7
⊢ (𝑛 ∈ (0..^𝑁) → ∃𝑥 ∈ ℕ0 ¬ (( I
↾ ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥)) |
56 | | rexnal 3169 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥)) |
57 | 55, 56 | sylib 217 |
. . . . . 6
⊢ (𝑛 ∈ (0..^𝑁) → ¬ ∀𝑥 ∈ ℕ0 (( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥)) |
58 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑛 ∈ V |
59 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ0
↦ 𝑛) = (𝑥 ∈ ℕ0
↦ 𝑛) |
60 | 58, 59 | fnmpti 6576 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0
↦ 𝑛) Fn
ℕ0 |
61 | 49 | fneq1d 6526 |
. . . . . . . 8
⊢ (𝑛 ∈ (0..^𝑁) → ((𝐺‘𝑛) Fn ℕ0 ↔ (𝑥 ∈ ℕ0
↦ 𝑛) Fn
ℕ0)) |
62 | 60, 61 | mpbiri 257 |
. . . . . . 7
⊢ (𝑛 ∈ (0..^𝑁) → (𝐺‘𝑛) Fn ℕ0) |
63 | | eqfnfv 6909 |
. . . . . . 7
⊢ ((( I
↾ ℕ0) Fn ℕ0 ∧ (𝐺‘𝑛) Fn ℕ0) → (( I ↾
ℕ0) = (𝐺‘𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥))) |
64 | 29, 62, 63 | sylancr 587 |
. . . . . 6
⊢ (𝑛 ∈ (0..^𝑁) → (( I ↾ ℕ0) =
(𝐺‘𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾
ℕ0)‘𝑥) = ((𝐺‘𝑛)‘𝑥))) |
65 | 57, 64 | mtbird 325 |
. . . . 5
⊢ (𝑛 ∈ (0..^𝑁) → ¬ ( I ↾
ℕ0) = (𝐺‘𝑛)) |
66 | 65 | nrex 3197 |
. . . 4
⊢ ¬
∃𝑛 ∈ (0..^𝑁)( I ↾
ℕ0) = (𝐺‘𝑛) |
67 | 34, 66 | pm3.2ni 878 |
. . 3
⊢ ¬ ((
I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺‘𝑛)) |
68 | | smndex1ibas.m |
. . . . . . . 8
⊢ 𝑀 =
(EndoFMnd‘ℕ0) |
69 | 68 | efmndid 18527 |
. . . . . . 7
⊢
(ℕ0 ∈ V → ( I ↾ ℕ0) =
(0g‘𝑀)) |
70 | 45, 69 | ax-mp 5 |
. . . . . 6
⊢ ( I
↾ ℕ0) = (0g‘𝑀) |
71 | 70 | eqcomi 2747 |
. . . . 5
⊢
(0g‘𝑀) = ( I ↾
ℕ0) |
72 | | smndex1mgm.b |
. . . . 5
⊢ 𝐵 = ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
73 | 71, 72 | eleq12i 2831 |
. . . 4
⊢
((0g‘𝑀) ∈ 𝐵 ↔ ( I ↾ ℕ0)
∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) |
74 | | elun 4083 |
. . . . 5
⊢ (( I
↾ ℕ0) ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (( I ↾ ℕ0)
∈ {𝐼} ∨ ( I ↾
ℕ0) ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) |
75 | | resiexg 7761 |
. . . . . . . 8
⊢
(ℕ0 ∈ V → ( I ↾ ℕ0)
∈ V) |
76 | 45, 75 | ax-mp 5 |
. . . . . . 7
⊢ ( I
↾ ℕ0) ∈ V |
77 | 76 | elsn 4576 |
. . . . . 6
⊢ (( I
↾ ℕ0) ∈ {𝐼} ↔ ( I ↾ ℕ0) =
𝐼) |
78 | | eliun 4928 |
. . . . . . 7
⊢ (( I
↾ ℕ0) ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈
{(𝐺‘𝑛)}) |
79 | 76 | elsn 4576 |
. . . . . . . 8
⊢ (( I
↾ ℕ0) ∈ {(𝐺‘𝑛)} ↔ ( I ↾ ℕ0) =
(𝐺‘𝑛)) |
80 | 79 | rexbii 3181 |
. . . . . . 7
⊢
(∃𝑛 ∈
(0..^𝑁)( I ↾
ℕ0) ∈ {(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺‘𝑛)) |
81 | 78, 80 | bitri 274 |
. . . . . 6
⊢ (( I
↾ ℕ0) ∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺‘𝑛)) |
82 | 77, 81 | orbi12i 912 |
. . . . 5
⊢ ((( I
↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0)
∈ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (( I ↾ ℕ0)
= 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺‘𝑛))) |
83 | 74, 82 | bitri 274 |
. . . 4
⊢ (( I
↾ ℕ0) ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (( I ↾ ℕ0)
= 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺‘𝑛))) |
84 | 73, 83 | bitri 274 |
. . 3
⊢
((0g‘𝑀) ∈ 𝐵 ↔ (( I ↾ ℕ0) =
𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺‘𝑛))) |
85 | 67, 84 | mtbir 323 |
. 2
⊢ ¬
(0g‘𝑀)
∈ 𝐵 |
86 | 85 | nelir 3052 |
1
⊢
(0g‘𝑀) ∉ 𝐵 |