MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1n0mnd Structured version   Visualization version   GIF version

Theorem smndex1n0mnd 18890
Description: The identity of the monoid 𝑀 of endofunctions on set 0 is not contained in the base set of the constructed monoid 𝑆. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1n0mnd (0g𝑀) ∉ 𝐵
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1n0mnd
StepHypRef Expression
1 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
2 nnnn0 12508 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fveq2 6876 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = (( I ↾ ℕ0)‘𝑁))
41, 2ax-mp 5 . . . . . . . . . . . . 13 𝑁 ∈ ℕ0
5 fvresi 7165 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (( I ↾ ℕ0)‘𝑁) = 𝑁)
64, 5ax-mp 5 . . . . . . . . . . . 12 (( I ↾ ℕ0)‘𝑁) = 𝑁
73, 6eqtrdi 2786 . . . . . . . . . . 11 (𝑥 = 𝑁 → (( I ↾ ℕ0)‘𝑥) = 𝑁)
8 fveq2 6876 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐼𝑥) = (𝐼𝑁))
97, 8eqeq12d 2751 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ 𝑁 = (𝐼𝑁)))
109notbid 318 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
1110adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ 𝑁 = (𝐼𝑁)))
12 nnne0 12274 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1312neneqd 2937 . . . . . . . . 9 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
14 smndex1ibas.i . . . . . . . . . . 11 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
15 oveq1 7412 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑥 mod 𝑁) = (𝑁 mod 𝑁))
16 nnrp 13020 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
17 modid0 13914 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 mod 𝑁) = 0)
1816, 17syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 mod 𝑁) = 0)
1915, 18sylan9eqr 2792 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 = 𝑁) → (𝑥 mod 𝑁) = 0)
20 c0ex 11229 . . . . . . . . . . . 12 0 ∈ V
2120a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 ∈ V)
2214, 19, 2, 21fvmptd2 6994 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝐼𝑁) = 0)
2322eqeq2d 2746 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 = (𝐼𝑁) ↔ 𝑁 = 0))
2413, 23mtbird 325 . . . . . . . 8 (𝑁 ∈ ℕ → ¬ 𝑁 = (𝐼𝑁))
252, 11, 24rspcedvd 3603 . . . . . . 7 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
261, 25ax-mp 5 . . . . . 6 𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
27 rexnal 3089 . . . . . 6 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
2826, 27mpbi 230 . . . . 5 ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)
29 fnresi 6667 . . . . . 6 ( I ↾ ℕ0) Fn ℕ0
30 ovex 7438 . . . . . . 7 (𝑥 mod 𝑁) ∈ V
3130, 14fnmpti 6681 . . . . . 6 𝐼 Fn ℕ0
32 eqfnfv 7021 . . . . . 6 ((( I ↾ ℕ0) Fn ℕ0𝐼 Fn ℕ0) → (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥)))
3329, 31, 32mp2an 692 . . . . 5 (( I ↾ ℕ0) = 𝐼 ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = (𝐼𝑥))
3428, 33mtbir 323 . . . 4 ¬ ( I ↾ ℕ0) = 𝐼
354a1i 11 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ0)
36 fveq2 6876 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐺𝑛)‘𝑥) = ((𝐺𝑛)‘𝑁))
377, 36eqeq12d 2751 . . . . . . . . . 10 (𝑥 = 𝑁 → ((( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ 𝑁 = ((𝐺𝑛)‘𝑁)))
3837notbid 318 . . . . . . . . 9 (𝑥 = 𝑁 → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
3938adantl 481 . . . . . . . 8 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → (¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ 𝑁 = ((𝐺𝑛)‘𝑁)))
40 fzonel 13690 . . . . . . . . . . 11 ¬ 𝑁 ∈ (0..^𝑁)
41 eleq1 2822 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4241eqcoms 2743 . . . . . . . . . . 11 (𝑁 = 𝑛 → (𝑛 ∈ (0..^𝑁) ↔ 𝑁 ∈ (0..^𝑁)))
4340, 42mtbiri 327 . . . . . . . . . 10 (𝑁 = 𝑛 → ¬ 𝑛 ∈ (0..^𝑁))
4443con2i 139 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑛)
45 nn0ex 12507 . . . . . . . . . . . . 13 0 ∈ V
4645mptex 7215 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0𝑛) ∈ V
47 smndex1ibas.g . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
4847fvmpt2 6997 . . . . . . . . . . . 12 ((𝑛 ∈ (0..^𝑁) ∧ (𝑥 ∈ ℕ0𝑛) ∈ V) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
4946, 48mpan2 691 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) = (𝑥 ∈ ℕ0𝑛))
50 eqidd 2736 . . . . . . . . . . 11 ((𝑛 ∈ (0..^𝑁) ∧ 𝑥 = 𝑁) → 𝑛 = 𝑛)
51 id 22 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ (0..^𝑁))
5249, 50, 35, 51fvmptd 6993 . . . . . . . . . 10 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛)‘𝑁) = 𝑛)
5352eqeq2d 2746 . . . . . . . . 9 (𝑛 ∈ (0..^𝑁) → (𝑁 = ((𝐺𝑛)‘𝑁) ↔ 𝑁 = 𝑛))
5444, 53mtbird 325 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ¬ 𝑁 = ((𝐺𝑛)‘𝑁))
5535, 39, 54rspcedvd 3603 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → ∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
56 rexnal 3089 . . . . . . 7 (∃𝑥 ∈ ℕ0 ¬ (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥) ↔ ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
5755, 56sylib 218 . . . . . 6 (𝑛 ∈ (0..^𝑁) → ¬ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥))
58 vex 3463 . . . . . . . . 9 𝑛 ∈ V
59 eqid 2735 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑛) = (𝑥 ∈ ℕ0𝑛)
6058, 59fnmpti 6681 . . . . . . . 8 (𝑥 ∈ ℕ0𝑛) Fn ℕ0
6149fneq1d 6631 . . . . . . . 8 (𝑛 ∈ (0..^𝑁) → ((𝐺𝑛) Fn ℕ0 ↔ (𝑥 ∈ ℕ0𝑛) Fn ℕ0))
6260, 61mpbiri 258 . . . . . . 7 (𝑛 ∈ (0..^𝑁) → (𝐺𝑛) Fn ℕ0)
63 eqfnfv 7021 . . . . . . 7 ((( I ↾ ℕ0) Fn ℕ0 ∧ (𝐺𝑛) Fn ℕ0) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6429, 62, 63sylancr 587 . . . . . 6 (𝑛 ∈ (0..^𝑁) → (( I ↾ ℕ0) = (𝐺𝑛) ↔ ∀𝑥 ∈ ℕ0 (( I ↾ ℕ0)‘𝑥) = ((𝐺𝑛)‘𝑥)))
6557, 64mtbird 325 . . . . 5 (𝑛 ∈ (0..^𝑁) → ¬ ( I ↾ ℕ0) = (𝐺𝑛))
6665nrex 3064 . . . 4 ¬ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)
6734, 66pm3.2ni 880 . . 3 ¬ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
68 smndex1ibas.m . . . . . . . 8 𝑀 = (EndoFMnd‘ℕ0)
6968efmndid 18866 . . . . . . 7 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
7045, 69ax-mp 5 . . . . . 6 ( I ↾ ℕ0) = (0g𝑀)
7170eqcomi 2744 . . . . 5 (0g𝑀) = ( I ↾ ℕ0)
72 smndex1mgm.b . . . . 5 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
7371, 72eleq12i 2827 . . . 4 ((0g𝑀) ∈ 𝐵 ↔ ( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
74 elun 4128 . . . . 5 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75 resiexg 7908 . . . . . . . 8 (ℕ0 ∈ V → ( I ↾ ℕ0) ∈ V)
7645, 75ax-mp 5 . . . . . . 7 ( I ↾ ℕ0) ∈ V
7776elsn 4616 . . . . . 6 (( I ↾ ℕ0) ∈ {𝐼} ↔ ( I ↾ ℕ0) = 𝐼)
78 eliun 4971 . . . . . . 7 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)})
7976elsn 4616 . . . . . . . 8 (( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ( I ↾ ℕ0) = (𝐺𝑛))
8079rexbii 3083 . . . . . . 7 (∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) ∈ {(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8178, 80bitri 275 . . . . . 6 (( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ↔ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛))
8277, 81orbi12i 914 . . . . 5 ((( I ↾ ℕ0) ∈ {𝐼} ∨ ( I ↾ ℕ0) ∈ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8374, 82bitri 275 . . . 4 (( I ↾ ℕ0) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8473, 83bitri 275 . . 3 ((0g𝑀) ∈ 𝐵 ↔ (( I ↾ ℕ0) = 𝐼 ∨ ∃𝑛 ∈ (0..^𝑁)( I ↾ ℕ0) = (𝐺𝑛)))
8567, 84mtbir 323 . 2 ¬ (0g𝑀) ∈ 𝐵
8685nelir 3039 1 (0g𝑀) ∉ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wnel 3036  wral 3051  wrex 3060  Vcvv 3459  cun 3924  {csn 4601   ciun 4967  cmpt 5201   I cid 5547  cres 5656   Fn wfn 6526  cfv 6531  (class class class)co 7405  0cc0 11129  cn 12240  0cn0 12501  +crp 13008  ..^cfzo 13671   mod cmo 13886  s cress 17251  0gc0g 17453  EndoFMndcefmnd 18846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-tset 17290  df-0g 17455  df-efmnd 18847
This theorem is referenced by:  nsmndex1  18891
  Copyright terms: Public domain W3C validator