MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleqtrid Structured version   Visualization version   GIF version

Theorem eleqtrid 2834
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1 𝐴𝐵
eleqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eleqtrid (𝜑𝐴𝐶)

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3 𝐴𝐵
21a1i 11 . 2 (𝜑𝐴𝐵)
3 eleqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2830 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-clel 2803
This theorem is referenced by:  eleqtrrid  2835  opth1  5435  opth  5436  eqelsuc  6418  tfrlem11  8356  oalimcl  8524  omlimcl  8542  frgp0  19690  txdis  23519  ordtconnlem1  33914  rankeq1o  36159
  Copyright terms: Public domain W3C validator