MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleqtrid Structured version   Visualization version   GIF version

Theorem eleqtrid 2831
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1 𝐴𝐵
eleqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eleqtrid (𝜑𝐴𝐶)

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3 𝐴𝐵
21a1i 11 . 2 (𝜑𝐴𝐵)
3 eleqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2827 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-cleq 2717  df-clel 2802
This theorem is referenced by:  eleqtrrid  2832  opth1  5477  opth  5478  eqelsuc  6455  tfrlem11  8409  oalimcl  8581  omlimcl  8599  frgp0  19727  txdis  23580  ordtconnlem1  33656  rankeq1o  35898
  Copyright terms: Public domain W3C validator