MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleqtrid Structured version   Visualization version   GIF version

Theorem eleqtrid 2837
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1 𝐴𝐵
eleqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eleqtrid (𝜑𝐴𝐶)

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3 𝐴𝐵
21a1i 11 . 2 (𝜑𝐴𝐵)
3 eleqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2833 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806
This theorem is referenced by:  eleqtrrid  2838  opth1  5413  opth  5414  eqelsuc  6392  tfrlem11  8307  oalimcl  8475  omlimcl  8493  frgp0  19672  txdis  23547  ordtconnlem1  33937  rankeq1o  36215  preel  38522
  Copyright terms: Public domain W3C validator