| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtrid | Structured version Visualization version GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrid.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eleqtrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrid.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3 | eleqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | eleqtrd 2833 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: eleqtrrid 2838 opth1 5413 opth 5414 eqelsuc 6392 tfrlem11 8307 oalimcl 8475 omlimcl 8493 frgp0 19672 txdis 23547 ordtconnlem1 33937 rankeq1o 36215 preel 38522 |
| Copyright terms: Public domain | W3C validator |