![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eleqtrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrid.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3 | eleqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eleqtrd 2846 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eleqtrrid 2851 opth1 5495 opth 5496 eqelsuc 6481 tfrlem11 8446 oalimcl 8618 omlimcl 8636 frgp0 19804 txdis 23663 ordtconnlem1 33872 rankeq1o 36137 |
Copyright terms: Public domain | W3C validator |