![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtrid | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrid.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eleqtrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrid.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3 | eleqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eleqtrd 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2809 |
This theorem is referenced by: eleqtrrid 2839 opth1 5475 opth 5476 eqelsuc 6448 tfrlem11 8392 oalimcl 8564 omlimcl 8582 frgp0 19670 txdis 23357 ordtconnlem1 33203 rankeq1o 35448 |
Copyright terms: Public domain | W3C validator |