Step | Hyp | Ref
| Expression |
1 | | limelon 6329 |
. . . 4
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) |
2 | | omcl 8366 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
3 | | eloni 6276 |
. . . . 5
⊢ ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵)) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·o 𝐵)) |
5 | 1, 4 | sylan2 593 |
. . 3
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Ord (𝐴 ·o 𝐵)) |
6 | 5 | adantr 481 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord (𝐴 ·o 𝐵)) |
7 | | 0ellim 6328 |
. . . . . . . 8
⊢ (Lim
𝐵 → ∅ ∈
𝐵) |
8 | | n0i 4267 |
. . . . . . . 8
⊢ (∅
∈ 𝐵 → ¬ 𝐵 = ∅) |
9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (Lim
𝐵 → ¬ 𝐵 = ∅) |
10 | | n0i 4267 |
. . . . . . 7
⊢ (∅
∈ 𝐴 → ¬ 𝐴 = ∅) |
11 | 9, 10 | anim12ci 614 |
. . . . . 6
⊢ ((Lim
𝐵 ∧ ∅ ∈
𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
12 | 11 | adantll 711 |
. . . . 5
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
13 | 12 | adantll 711 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
14 | | om00 8406 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
15 | 14 | notbid 318 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
16 | | ioran 981 |
. . . . . . 7
⊢ (¬
(𝐴 = ∅ ∨ 𝐵 = ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
17 | 15, 16 | bitrdi 287 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))) |
18 | 1, 17 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))) |
19 | 18 | adantr 481 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))) |
20 | 13, 19 | mpbird 256 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ (𝐴 ·o 𝐵) = ∅) |
21 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
22 | 21 | sucid 6345 |
. . . . . . . . . 10
⊢ 𝑦 ∈ suc 𝑦 |
23 | | omlim 8363 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪
𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
24 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ ((𝐴 ·o 𝐵) = suc 𝑦 → ((𝐴 ·o 𝐵) = ∪
𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ suc 𝑦 = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥))) |
25 | 24 | biimpac 479 |
. . . . . . . . . . 11
⊢ (((𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
26 | 23, 25 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
27 | 22, 26 | eleqtrid 2845 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → 𝑦 ∈ ∪
𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
28 | | eliun 4928 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥)) |
29 | 27, 28 | sylib 217 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥)) |
30 | 29 | adantlr 712 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥)) |
31 | | onelon 6291 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
32 | 1, 31 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
33 | | onnbtwn 6357 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ On → ¬ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥)) |
34 | | imnan 400 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥) ↔ ¬ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥)) |
35 | 33, 34 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On → (𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥)) |
36 | 35 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥)) |
37 | 36 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥)) |
38 | 32, 37 | mpd 15 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → ¬ 𝐵 ∈ suc 𝑥) |
39 | 38 | ad5ant24 758 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ On
∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 ·o 𝑥)) → ¬ 𝐵 ∈ suc 𝑥) |
40 | | simpl 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ On) |
41 | 40, 31 | jca 512 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → (𝐵 ∈ On ∧ 𝑥 ∈ On)) |
42 | 1, 41 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∈ On ∧ 𝑥 ∈ On)) |
43 | 42 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵)) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On))) |
44 | 43 | anassrs 468 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On))) |
45 | | omcl 8366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
46 | | eloni 6276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ·o 𝑥) ∈ On → Ord (𝐴 ·o 𝑥)) |
47 | | ordsucelsuc 7669 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Ord
(𝐴 ·o
𝑥) → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 ·o 𝑥))) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ·o 𝑥) ∈ On → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 ·o 𝑥))) |
49 | | oa1suc 8361 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ·o 𝑥) ∈ On → ((𝐴 ·o 𝑥) +o 1o) =
suc (𝐴 ·o
𝑥)) |
50 | 49 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ·o 𝑥) ∈ On → (suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o 1o) ↔ suc
𝑦 ∈ suc (𝐴 ·o 𝑥))) |
51 | 48, 50 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ·o 𝑥) ∈ On → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o
1o))) |
52 | 45, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o
1o))) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o
1o))) |
54 | | eloni 6276 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ On → Ord 𝐴) |
55 | | ordgt0ge1 8323 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝐴 → (∅ ∈
𝐴 ↔ 1o
⊆ 𝐴)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔
1o ⊆ 𝐴)) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅
∈ 𝐴 ↔
1o ⊆ 𝐴)) |
58 | | 1on 8309 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
1o ∈ On |
59 | | oaword 8380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1o ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (1o ⊆
𝐴 ↔ ((𝐴 ·o 𝑥) +o 1o)
⊆ ((𝐴
·o 𝑥)
+o 𝐴))) |
60 | 58, 59 | mp3an1 1447 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) →
(1o ⊆ 𝐴
↔ ((𝐴
·o 𝑥)
+o 1o) ⊆ ((𝐴 ·o 𝑥) +o 𝐴))) |
61 | 45, 60 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) →
(1o ⊆ 𝐴
↔ ((𝐴
·o 𝑥)
+o 1o) ⊆ ((𝐴 ·o 𝑥) +o 𝐴))) |
62 | 57, 61 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅
∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 1o)
⊆ ((𝐴
·o 𝑥)
+o 𝐴))) |
63 | 62 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝑥) +o 1o)
⊆ ((𝐴
·o 𝑥)
+o 𝐴)) |
64 | | omsuc 8356 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
66 | 63, 65 | sseqtrrd 3962 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝑥) +o 1o)
⊆ (𝐴
·o suc 𝑥)) |
67 | 66 | sseld 3920 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o 1o) → suc
𝑦 ∈ (𝐴 ·o suc 𝑥))) |
68 | 53, 67 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → suc 𝑦 ∈ (𝐴 ·o suc 𝑥))) |
69 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ·o 𝐵) = suc 𝑦 → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) ↔ suc 𝑦 ∈ (𝐴 ·o suc 𝑥))) |
70 | 69 | biimprd 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ·o 𝐵) = suc 𝑦 → (suc 𝑦 ∈ (𝐴 ·o suc 𝑥) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥))) |
71 | 68, 70 | syl9 77 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝐵) = suc 𝑦 → (𝑦 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥)))) |
72 | 71 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥)))) |
73 | 72 | adantlrl 717 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅
∈ 𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥)))) |
74 | | sucelon 7664 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ On ↔ suc 𝑥 ∈ On) |
75 | | omord 8399 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥))) |
76 | | simpl 483 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴) → 𝐵 ∈ suc 𝑥) |
77 | 75, 76 | syl6bir 253 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
78 | 74, 77 | syl3an2b 1403 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
79 | 78 | 3comr 1124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
80 | 79 | 3expb 1119 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅
∈ 𝐴) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
82 | 73, 81 | syl6d 75 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅
∈ 𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥))) |
83 | 44, 82 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥))) |
84 | 83 | an32s 649 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥))) |
85 | 84 | imp 407 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ On
∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 ·o 𝑥)) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥)) |
86 | 39, 85 | mtod 197 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ On
∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 ·o 𝑥)) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
87 | 86 | rexlimdva2 3216 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥) → ¬ (𝐴 ·o 𝐵) = suc 𝑦)) |
88 | 87 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥) → ¬ (𝐴 ·o 𝐵) = suc 𝑦)) |
89 | 30, 88 | mpd 15 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
90 | 89 | pm2.01da 796 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
91 | 90 | adantr 481 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑦 ∈ On) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
92 | 91 | nrexdv 3198 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦) |
93 | | ioran 981 |
. . 3
⊢ (¬
((𝐴 ·o
𝐵) = ∅ ∨
∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦) ↔ (¬ (𝐴 ·o 𝐵) = ∅ ∧ ¬ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦)) |
94 | 20, 92, 93 | sylanbrc 583 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ ((𝐴 ·o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦)) |
95 | | dflim3 7694 |
. 2
⊢ (Lim
(𝐴 ·o
𝐵) ↔ (Ord (𝐴 ·o 𝐵) ∧ ¬ ((𝐴 ·o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦))) |
96 | 6, 94, 95 | sylanbrc 583 |
1
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝐵)) |