| Step | Hyp | Ref
| Expression |
| 1 | | limelon 6447 |
. . . 4
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) |
| 2 | | omcl 8575 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) |
| 3 | | eloni 6393 |
. . . . 5
⊢ ((𝐴 ·o 𝐵) ∈ On → Ord (𝐴 ·o 𝐵)) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ·o 𝐵)) |
| 5 | 1, 4 | sylan2 593 |
. . 3
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → Ord (𝐴 ·o 𝐵)) |
| 6 | 5 | adantr 480 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord (𝐴 ·o 𝐵)) |
| 7 | | 0ellim 6446 |
. . . . . . . 8
⊢ (Lim
𝐵 → ∅ ∈
𝐵) |
| 8 | | n0i 4339 |
. . . . . . . 8
⊢ (∅
∈ 𝐵 → ¬ 𝐵 = ∅) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (Lim
𝐵 → ¬ 𝐵 = ∅) |
| 10 | | n0i 4339 |
. . . . . . 7
⊢ (∅
∈ 𝐴 → ¬ 𝐴 = ∅) |
| 11 | 9, 10 | anim12ci 614 |
. . . . . 6
⊢ ((Lim
𝐵 ∧ ∅ ∈
𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
| 12 | 11 | adantll 714 |
. . . . 5
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
| 13 | 12 | adantll 714 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
| 14 | | om00 8614 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 15 | 14 | notbid 318 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ ¬ (𝐴 = ∅ ∨ 𝐵 = ∅))) |
| 16 | | ioran 985 |
. . . . . . 7
⊢ (¬
(𝐴 = ∅ ∨ 𝐵 = ∅) ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅)) |
| 17 | 15, 16 | bitrdi 287 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))) |
| 18 | 1, 17 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (¬ (𝐴 ·o 𝐵) = ∅ ↔ (¬ 𝐴 = ∅ ∧ ¬ 𝐵 = ∅))) |
| 20 | 13, 19 | mpbird 257 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ (𝐴 ·o 𝐵) = ∅) |
| 21 | | vex 3483 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 22 | 21 | sucid 6465 |
. . . . . . . . . 10
⊢ 𝑦 ∈ suc 𝑦 |
| 23 | | omlim 8572 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪
𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| 24 | | eqeq1 2740 |
. . . . . . . . . . . 12
⊢ ((𝐴 ·o 𝐵) = suc 𝑦 → ((𝐴 ·o 𝐵) = ∪
𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ suc 𝑦 = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥))) |
| 25 | 24 | biimpac 478 |
. . . . . . . . . . 11
⊢ (((𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| 26 | 23, 25 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → suc 𝑦 = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| 27 | 22, 26 | eleqtrid 2846 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → 𝑦 ∈ ∪
𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| 28 | | eliun 4994 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥)) |
| 29 | 27, 28 | sylib 218 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥)) |
| 30 | 29 | adantlr 715 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → ∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥)) |
| 31 | | onelon 6408 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
| 32 | 1, 31 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
| 33 | | onnbtwn 6477 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ On → ¬ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥)) |
| 34 | | imnan 399 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥) ↔ ¬ (𝑥 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝑥)) |
| 35 | 33, 34 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ On → (𝑥 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝑥)) |
| 36 | 35 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥)) |
| 37 | 36 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥)) |
| 38 | 32, 37 | mpd 15 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → ¬ 𝐵 ∈ suc 𝑥) |
| 39 | 38 | ad5ant24 760 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ On
∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 ·o 𝑥)) → ¬ 𝐵 ∈ suc 𝑥) |
| 40 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝐵 ∈ On) |
| 41 | 40, 31 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → (𝐵 ∈ On ∧ 𝑥 ∈ On)) |
| 42 | 1, 41 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝐵 ∈ On ∧ 𝑥 ∈ On)) |
| 43 | 42 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) ∧ 𝑥 ∈ 𝐵)) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On))) |
| 44 | 43 | anassrs 467 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On))) |
| 45 | | omcl 8575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) ∈ On) |
| 46 | | eloni 6393 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ·o 𝑥) ∈ On → Ord (𝐴 ·o 𝑥)) |
| 47 | | ordsucelsuc 7843 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Ord
(𝐴 ·o
𝑥) → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 ·o 𝑥))) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ·o 𝑥) ∈ On → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 ·o 𝑥))) |
| 49 | | oa1suc 8570 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ·o 𝑥) ∈ On → ((𝐴 ·o 𝑥) +o 1o) =
suc (𝐴 ·o
𝑥)) |
| 50 | 49 | eleq2d 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ·o 𝑥) ∈ On → (suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o 1o) ↔ suc
𝑦 ∈ suc (𝐴 ·o 𝑥))) |
| 51 | 48, 50 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ·o 𝑥) ∈ On → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o
1o))) |
| 52 | 45, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o
1o))) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) ↔ suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o
1o))) |
| 54 | | eloni 6393 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 55 | | ordgt0ge1 8532 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Ord
𝐴 → (∅ ∈
𝐴 ↔ 1o
⊆ 𝐴)) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔
1o ⊆ 𝐴)) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅
∈ 𝐴 ↔
1o ⊆ 𝐴)) |
| 58 | | 1on 8519 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
1o ∈ On |
| 59 | | oaword 8588 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1o ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) → (1o ⊆
𝐴 ↔ ((𝐴 ·o 𝑥) +o 1o)
⊆ ((𝐴
·o 𝑥)
+o 𝐴))) |
| 60 | 58, 59 | mp3an1 1449 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ On ∧ (𝐴 ·o 𝑥) ∈ On) →
(1o ⊆ 𝐴
↔ ((𝐴
·o 𝑥)
+o 1o) ⊆ ((𝐴 ·o 𝑥) +o 𝐴))) |
| 61 | 45, 60 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) →
(1o ⊆ 𝐴
↔ ((𝐴
·o 𝑥)
+o 1o) ⊆ ((𝐴 ·o 𝑥) +o 𝐴))) |
| 62 | 57, 61 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅
∈ 𝐴 ↔ ((𝐴 ·o 𝑥) +o 1o)
⊆ ((𝐴
·o 𝑥)
+o 𝐴))) |
| 63 | 62 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝑥) +o 1o)
⊆ ((𝐴
·o 𝑥)
+o 𝐴)) |
| 64 | | omsuc 8565 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝐴 ·o suc 𝑥) = ((𝐴 ·o 𝑥) +o 𝐴)) |
| 66 | 63, 65 | sseqtrrd 4020 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝑥) +o 1o)
⊆ (𝐴
·o suc 𝑥)) |
| 67 | 66 | sseld 3981 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (suc 𝑦 ∈ ((𝐴 ·o 𝑥) +o 1o) → suc
𝑦 ∈ (𝐴 ·o suc 𝑥))) |
| 68 | 53, 67 | sylbid 240 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → suc 𝑦 ∈ (𝐴 ·o suc 𝑥))) |
| 69 | | eleq1 2828 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ·o 𝐵) = suc 𝑦 → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) ↔ suc 𝑦 ∈ (𝐴 ·o suc 𝑥))) |
| 70 | 69 | biimprd 248 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ·o 𝐵) = suc 𝑦 → (suc 𝑦 ∈ (𝐴 ·o suc 𝑥) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥))) |
| 71 | 68, 70 | syl9 77 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → ((𝐴 ·o 𝐵) = suc 𝑦 → (𝑦 ∈ (𝐴 ·o 𝑥) → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥)))) |
| 72 | 71 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ ∅ ∈
𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥)))) |
| 73 | 72 | adantlrl 720 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅
∈ 𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥)))) |
| 74 | | onsucb 7838 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ On ↔ suc 𝑥 ∈ On) |
| 75 | | omord 8607 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥))) |
| 76 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ suc 𝑥 ∧ ∅ ∈ 𝐴) → 𝐵 ∈ suc 𝑥) |
| 77 | 75, 76 | biimtrrdi 254 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
| 78 | 74, 77 | syl3an2b 1405 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
| 79 | 78 | 3comr 1125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
| 80 | 79 | 3expb 1120 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
| 81 | 80 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅
∈ 𝐴) → ((𝐴 ·o 𝐵) ∈ (𝐴 ·o suc 𝑥) → 𝐵 ∈ suc 𝑥)) |
| 82 | 73, 81 | syl6d 75 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ On)) ∧ ∅
∈ 𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥))) |
| 83 | 44, 82 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ 𝑥 ∈ 𝐵) ∧ ∅ ∈ 𝐴) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥))) |
| 84 | 83 | an32s 652 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ (𝐴 ·o 𝑥) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥))) |
| 85 | 84 | imp 406 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ On
∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 ·o 𝑥)) → ((𝐴 ·o 𝐵) = suc 𝑦 → 𝐵 ∈ suc 𝑥)) |
| 86 | 39, 85 | mtod 198 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ On
∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 ·o 𝑥)) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
| 87 | 86 | rexlimdva2 3156 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥) → ¬ (𝐴 ·o 𝐵) = suc 𝑦)) |
| 88 | 87 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → (∃𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ·o 𝑥) → ¬ (𝐴 ·o 𝐵) = suc 𝑦)) |
| 89 | 30, 88 | mpd 15 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ (𝐴 ·o 𝐵) = suc 𝑦) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
| 90 | 89 | pm2.01da 798 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
| 91 | 90 | adantr 480 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝑦 ∈ On) → ¬ (𝐴 ·o 𝐵) = suc 𝑦) |
| 92 | 91 | nrexdv 3148 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦) |
| 93 | | ioran 985 |
. . 3
⊢ (¬
((𝐴 ·o
𝐵) = ∅ ∨
∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦) ↔ (¬ (𝐴 ·o 𝐵) = ∅ ∧ ¬ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦)) |
| 94 | 20, 92, 93 | sylanbrc 583 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → ¬ ((𝐴 ·o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦)) |
| 95 | | dflim3 7869 |
. 2
⊢ (Lim
(𝐴 ·o
𝐵) ↔ (Ord (𝐴 ·o 𝐵) ∧ ¬ ((𝐴 ·o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 ·o 𝐵) = suc 𝑦))) |
| 96 | 6, 94, 95 | sylanbrc 583 |
1
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·o 𝐵)) |