![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opth1 | Structured version Visualization version GIF version |
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opth1 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opi1 5488 | . . 3 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
4 | id 22 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
5 | 3, 4 | eleqtrid 2850 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
6 | 1 | sneqr 4865 | . . . 4 ⊢ ({𝐴} = {𝐶} → 𝐴 = 𝐶) |
7 | 6 | a1i 11 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶} → 𝐴 = 𝐶)) |
8 | oprcl 4923 | . . . . . . 7 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
9 | 8 | simpld 494 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
10 | prid1g 4785 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷}) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐶 ∈ {𝐶, 𝐷}) |
12 | eleq2 2833 | . . . . 5 ⊢ ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷})) | |
13 | 11, 12 | syl5ibrcom 247 | . . . 4 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴})) |
14 | elsni 4665 | . . . . 5 ⊢ (𝐶 ∈ {𝐴} → 𝐶 = 𝐴) | |
15 | 14 | eqcomd 2746 | . . . 4 ⊢ (𝐶 ∈ {𝐴} → 𝐴 = 𝐶) |
16 | 13, 15 | syl6 35 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶)) |
17 | id 22 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) | |
18 | dfopg 4895 | . . . . . 6 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
19 | 8, 18 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
20 | 17, 19 | eleqtrd 2846 | . . . 4 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}}) |
21 | elpri 4671 | . . . 4 ⊢ ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) |
23 | 7, 16, 22 | mpjaod 859 | . 2 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
24 | 5, 23 | syl 17 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: opth 5496 dmsnopg 6244 funcnvsn 6628 oprabidw 7479 oprabid 7480 seqomlem2 8507 unxpdomlem3 9315 dfac5lem4 10195 dfac5lem4OLD 10197 dcomex 10516 canthwelem 10719 uzrdgfni 14009 fnpr2ob 17618 gsum2d2 20016 noseqrdgfn 28330 poimirlem9 37589 ichnreuop 47346 ichreuopeq 47347 |
Copyright terms: Public domain | W3C validator |