MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1 Structured version   Visualization version   GIF version

Theorem opth1 5430
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
2 opth1.2 . . . 4 𝐵 ∈ V
31, 2opi1 5423 . . 3 {𝐴} ∈ ⟨𝐴, 𝐵
4 id 22 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
53, 4eleqtrid 2834 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
61sneqr 4800 . . . 4 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
76a1i 11 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
8 oprcl 4859 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
98simpld 494 . . . . . 6 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
10 prid1g 4720 . . . . . 6 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
119, 10syl 17 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
12 eleq2 2817 . . . . 5 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1311, 12syl5ibrcom 247 . . . 4 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
14 elsni 4602 . . . . 5 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1514eqcomd 2735 . . . 4 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1613, 15syl6 35 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
17 id 22 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
18 dfopg 4831 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
198, 18syl 17 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
2017, 19eleqtrd 2830 . . . 4 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 4609 . . . 4 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 17 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
237, 16, 22mpjaod 860 . 2 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
245, 23syl 17 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  {cpr 4587  cop 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592
This theorem is referenced by:  opth  5431  dmsnopg  6174  funcnvsn  6550  oprabidw  7400  oprabid  7401  seqomlem2  8396  unxpdomlem3  9175  dfac5lem4  10055  dfac5lem4OLD  10057  dcomex  10376  canthwelem  10579  uzrdgfni  13899  fnpr2ob  17497  gsum2d2  19880  noseqrdgfn  28176  poimirlem9  37596  ichnreuop  47446  ichreuopeq  47447  diag1f1lem  49268  idfudiag1bas  49486
  Copyright terms: Public domain W3C validator