| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth1 | Structured version Visualization version GIF version | ||
| Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opth1 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | opi1 5443 | . . 3 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| 4 | id 22 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 5 | 3, 4 | eleqtrid 2840 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
| 6 | 1 | sneqr 4816 | . . . 4 ⊢ ({𝐴} = {𝐶} → 𝐴 = 𝐶) |
| 7 | 6 | a1i 11 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶} → 𝐴 = 𝐶)) |
| 8 | oprcl 4875 | . . . . . . 7 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
| 9 | 8 | simpld 494 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
| 10 | prid1g 4736 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷}) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐶 ∈ {𝐶, 𝐷}) |
| 12 | eleq2 2823 | . . . . 5 ⊢ ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷})) | |
| 13 | 11, 12 | syl5ibrcom 247 | . . . 4 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴})) |
| 14 | elsni 4618 | . . . . 5 ⊢ (𝐶 ∈ {𝐴} → 𝐶 = 𝐴) | |
| 15 | 14 | eqcomd 2741 | . . . 4 ⊢ (𝐶 ∈ {𝐴} → 𝐴 = 𝐶) |
| 16 | 13, 15 | syl6 35 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶)) |
| 17 | id 22 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) | |
| 18 | dfopg 4847 | . . . . . 6 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
| 19 | 8, 18 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
| 20 | 17, 19 | eleqtrd 2836 | . . . 4 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}}) |
| 21 | elpri 4625 | . . . 4 ⊢ ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) |
| 23 | 7, 16, 22 | mpjaod 860 | . 2 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| 24 | 5, 23 | syl 17 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 {cpr 4603 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: opth 5451 dmsnopg 6202 funcnvsn 6585 oprabidw 7434 oprabid 7435 seqomlem2 8463 unxpdomlem3 9258 dfac5lem4 10138 dfac5lem4OLD 10140 dcomex 10459 canthwelem 10662 uzrdgfni 13974 fnpr2ob 17570 gsum2d2 19953 noseqrdgfn 28229 poimirlem9 37599 ichnreuop 47434 ichreuopeq 47435 diag1f1lem 49134 idfudiag1bas 49324 |
| Copyright terms: Public domain | W3C validator |