![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opth1 | Structured version Visualization version GIF version |
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opth1 | ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opi1 5467 | . . 3 ⊢ {𝐴} ∈ ⟨𝐴, 𝐵⟩ |
4 | id 22 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) | |
5 | 3, 4 | eleqtrid 2839 | . 2 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩) |
6 | 1 | sneqr 4840 | . . . 4 ⊢ ({𝐴} = {𝐶} → 𝐴 = 𝐶) |
7 | 6 | a1i 11 | . . 3 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶)) |
8 | oprcl 4898 | . . . . . . 7 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
9 | 8 | simpld 495 | . . . . . 6 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V) |
10 | prid1g 4763 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷}) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷}) |
12 | eleq2 2822 | . . . . 5 ⊢ ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷})) | |
13 | 11, 12 | syl5ibrcom 246 | . . . 4 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴})) |
14 | elsni 4644 | . . . . 5 ⊢ (𝐶 ∈ {𝐴} → 𝐶 = 𝐴) | |
15 | 14 | eqcomd 2738 | . . . 4 ⊢ (𝐶 ∈ {𝐴} → 𝐴 = 𝐶) |
16 | 13, 15 | syl6 35 | . . 3 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶)) |
17 | id 22 | . . . . 5 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩) | |
18 | dfopg 4870 | . . . . . 6 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}}) | |
19 | 8, 18 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}}) |
20 | 17, 19 | eleqtrd 2835 | . . . 4 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}}) |
21 | elpri 4649 | . . . 4 ⊢ ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) |
23 | 7, 16, 22 | mpjaod 858 | . 2 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶) |
24 | 5, 23 | syl 17 | 1 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 {cpr 4629 ⟨cop 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 |
This theorem is referenced by: opth 5475 dmsnopg 6209 funcnvsn 6595 oprabidw 7436 oprabid 7437 seqomlem2 8447 unxpdomlem3 9248 dfac5lem4 10117 dcomex 10438 canthwelem 10641 uzrdgfni 13919 fnpr2ob 17500 gsum2d2 19836 poimirlem9 36485 ichnreuop 46126 ichreuopeq 46127 |
Copyright terms: Public domain | W3C validator |