| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth1 | Structured version Visualization version GIF version | ||
| Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opth1.1 | ⊢ 𝐴 ∈ V |
| opth1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opth1 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | opi1 5423 | . . 3 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| 4 | id 22 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 5 | 3, 4 | eleqtrid 2834 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) |
| 6 | 1 | sneqr 4800 | . . . 4 ⊢ ({𝐴} = {𝐶} → 𝐴 = 𝐶) |
| 7 | 6 | a1i 11 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶} → 𝐴 = 𝐶)) |
| 8 | oprcl 4859 | . . . . . . 7 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
| 9 | 8 | simpld 494 | . . . . . 6 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐶 ∈ V) |
| 10 | prid1g 4720 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷}) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐶 ∈ {𝐶, 𝐷}) |
| 12 | eleq2 2817 | . . . . 5 ⊢ ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷})) | |
| 13 | 11, 12 | syl5ibrcom 247 | . . . 4 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴})) |
| 14 | elsni 4602 | . . . . 5 ⊢ (𝐶 ∈ {𝐴} → 𝐶 = 𝐴) | |
| 15 | 14 | eqcomd 2735 | . . . 4 ⊢ (𝐶 ∈ {𝐴} → 𝐴 = 𝐶) |
| 16 | 13, 15 | syl6 35 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶)) |
| 17 | id 22 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → {𝐴} ∈ 〈𝐶, 𝐷〉) | |
| 18 | dfopg 4831 | . . . . . 6 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) | |
| 19 | 8, 18 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉 = {{𝐶}, {𝐶, 𝐷}}) |
| 20 | 17, 19 | eleqtrd 2830 | . . . 4 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}}) |
| 21 | elpri 4609 | . . . 4 ⊢ ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) |
| 23 | 7, 16, 22 | mpjaod 860 | . 2 ⊢ ({𝐴} ∈ 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| 24 | 5, 23 | syl 17 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 {cpr 4587 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: opth 5431 dmsnopg 6174 funcnvsn 6550 oprabidw 7400 oprabid 7401 seqomlem2 8396 unxpdomlem3 9175 dfac5lem4 10055 dfac5lem4OLD 10057 dcomex 10376 canthwelem 10579 uzrdgfni 13899 fnpr2ob 17497 gsum2d2 19880 noseqrdgfn 28176 poimirlem9 37596 ichnreuop 47446 ichreuopeq 47447 diag1f1lem 49268 idfudiag1bas 49486 |
| Copyright terms: Public domain | W3C validator |