![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opth1 | Structured version Visualization version GIF version |
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opth1.1 | ⊢ 𝐴 ∈ V |
opth1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opth1 | ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opth1.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opi1 5468 | . . 3 ⊢ {𝐴} ∈ ⟨𝐴, 𝐵⟩ |
4 | id 22 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) | |
5 | 3, 4 | eleqtrid 2838 | . 2 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩) |
6 | 1 | sneqr 4841 | . . . 4 ⊢ ({𝐴} = {𝐶} → 𝐴 = 𝐶) |
7 | 6 | a1i 11 | . . 3 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶)) |
8 | oprcl 4899 | . . . . . . 7 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
9 | 8 | simpld 494 | . . . . . 6 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V) |
10 | prid1g 4764 | . . . . . 6 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷}) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷}) |
12 | eleq2 2821 | . . . . 5 ⊢ ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷})) | |
13 | 11, 12 | syl5ibrcom 246 | . . . 4 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴})) |
14 | elsni 4645 | . . . . 5 ⊢ (𝐶 ∈ {𝐴} → 𝐶 = 𝐴) | |
15 | 14 | eqcomd 2737 | . . . 4 ⊢ (𝐶 ∈ {𝐴} → 𝐴 = 𝐶) |
16 | 13, 15 | syl6 35 | . . 3 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶)) |
17 | id 22 | . . . . 5 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩) | |
18 | dfopg 4871 | . . . . . 6 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}}) | |
19 | 8, 18 | syl 17 | . . . . 5 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}}) |
20 | 17, 19 | eleqtrd 2834 | . . . 4 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}}) |
21 | elpri 4650 | . . . 4 ⊢ ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷})) |
23 | 7, 16, 22 | mpjaod 857 | . 2 ⊢ ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶) |
24 | 5, 23 | syl 17 | 1 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {csn 4628 {cpr 4630 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: opth 5476 dmsnopg 6212 funcnvsn 6598 oprabidw 7443 oprabid 7444 seqomlem2 8457 unxpdomlem3 9258 dfac5lem4 10127 dcomex 10448 canthwelem 10651 uzrdgfni 13930 fnpr2ob 17511 gsum2d2 19887 poimirlem9 36813 ichnreuop 46451 ichreuopeq 46452 |
Copyright terms: Public domain | W3C validator |