MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1 Structured version   Visualization version   GIF version

Theorem opth1 5486
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
2 opth1.2 . . . 4 𝐵 ∈ V
31, 2opi1 5479 . . 3 {𝐴} ∈ ⟨𝐴, 𝐵
4 id 22 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
53, 4eleqtrid 2845 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
61sneqr 4845 . . . 4 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
76a1i 11 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
8 oprcl 4904 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
98simpld 494 . . . . . 6 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
10 prid1g 4765 . . . . . 6 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
119, 10syl 17 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
12 eleq2 2828 . . . . 5 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1311, 12syl5ibrcom 247 . . . 4 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
14 elsni 4648 . . . . 5 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1514eqcomd 2741 . . . 4 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1613, 15syl6 35 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
17 id 22 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
18 dfopg 4876 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
198, 18syl 17 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
2017, 19eleqtrd 2841 . . . 4 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 4654 . . . 4 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 17 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
237, 16, 22mpjaod 860 . 2 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
245, 23syl 17 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  {cpr 4633  cop 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638
This theorem is referenced by:  opth  5487  dmsnopg  6235  funcnvsn  6618  oprabidw  7462  oprabid  7463  seqomlem2  8490  unxpdomlem3  9286  dfac5lem4  10164  dfac5lem4OLD  10166  dcomex  10485  canthwelem  10688  uzrdgfni  13996  fnpr2ob  17605  gsum2d2  20007  noseqrdgfn  28327  poimirlem9  37616  ichnreuop  47397  ichreuopeq  47398
  Copyright terms: Public domain W3C validator