MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1 Structured version   Visualization version   GIF version

Theorem opth1 5384
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
2 opth1.2 . . . 4 𝐵 ∈ V
31, 2opi1 5377 . . 3 {𝐴} ∈ ⟨𝐴, 𝐵
4 id 22 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
53, 4eleqtrid 2845 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
61sneqr 4768 . . . 4 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
76a1i 11 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
8 oprcl 4827 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
98simpld 494 . . . . . 6 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
10 prid1g 4693 . . . . . 6 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
119, 10syl 17 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
12 eleq2 2827 . . . . 5 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1311, 12syl5ibrcom 246 . . . 4 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
14 elsni 4575 . . . . 5 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1514eqcomd 2744 . . . 4 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1613, 15syl6 35 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
17 id 22 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
18 dfopg 4799 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
198, 18syl 17 . . . . 5 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
2017, 19eleqtrd 2841 . . . 4 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 4580 . . . 4 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 17 . . 3 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
237, 16, 22mpjaod 856 . 2 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
245, 23syl 17 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  {cpr 4560  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  opth  5385  dmsnopg  6105  funcnvsn  6468  oprabidw  7286  oprabid  7287  seqomlem2  8252  unxpdomlem3  8958  dfac5lem4  9813  dcomex  10134  canthwelem  10337  uzrdgfni  13606  fnpr2ob  17186  gsum2d2  19490  poimirlem9  35713  ichnreuop  44812  ichreuopeq  44813
  Copyright terms: Public domain W3C validator