MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem11 Structured version   Visualization version   GIF version

Theorem tfrlem11 8190
Description: Lemma for transfinite recursion. Compute the value of 𝐶. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem.3 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
Assertion
Ref Expression
tfrlem11 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem11
StepHypRef Expression
1 elsuci 6317 . 2 (𝐵 ∈ suc dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)))
2 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
3 tfrlem.3 . . . . . . . . 9 𝐶 = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
42, 3tfrlem10 8189 . . . . . . . 8 (dom recs(𝐹) ∈ On → 𝐶 Fn suc dom recs(𝐹))
5 fnfun 6517 . . . . . . . 8 (𝐶 Fn suc dom recs(𝐹) → Fun 𝐶)
64, 5syl 17 . . . . . . 7 (dom recs(𝐹) ∈ On → Fun 𝐶)
7 ssun1 4102 . . . . . . . . 9 recs(𝐹) ⊆ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
87, 3sseqtrri 3954 . . . . . . . 8 recs(𝐹) ⊆ 𝐶
92tfrlem9 8187 . . . . . . . . 9 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
10 funssfv 6777 . . . . . . . . . . . 12 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
11103expa 1116 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ∈ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
1211adantrl 712 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐶𝐵) = (recs(𝐹)‘𝐵))
13 onelss 6293 . . . . . . . . . . . 12 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹)))
1413imp 406 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → 𝐵 ⊆ dom recs(𝐹))
15 fun2ssres 6463 . . . . . . . . . . . . 13 ((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
16153expa 1116 . . . . . . . . . . . 12 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
1716fveq2d 6760 . . . . . . . . . . 11 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ 𝐵 ⊆ dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1814, 17sylan2 592 . . . . . . . . . 10 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐹‘(𝐶𝐵)) = (𝐹‘(recs(𝐹) ↾ 𝐵)))
1912, 18eqeq12d 2754 . . . . . . . . 9 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ (recs(𝐹)‘𝐵) = (𝐹‘(recs(𝐹) ↾ 𝐵))))
209, 19syl5ibr 245 . . . . . . . 8 (((Fun 𝐶 ∧ recs(𝐹) ⊆ 𝐶) ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
218, 20mpanl2 697 . . . . . . 7 ((Fun 𝐶 ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
226, 21sylan 579 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ (dom recs(𝐹) ∈ On ∧ 𝐵 ∈ dom recs(𝐹))) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
2322exp32 420 . . . . 5 (dom recs(𝐹) ∈ On → (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))))
2423pm2.43i 52 . . . 4 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))))
2524pm2.43d 53 . . 3 (dom recs(𝐹) ∈ On → (𝐵 ∈ dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
26 opex 5373 . . . . . . . . 9 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ V
2726snid 4594 . . . . . . . 8 𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨𝐵, (𝐹‘(𝐶𝐵))⟩}
28 opeq1 4801 . . . . . . . . . . 11 (𝐵 = dom recs(𝐹) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
2928adantl 481 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩)
30 eqimss 3973 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → 𝐵 ⊆ dom recs(𝐹))
318, 15mp3an2 1447 . . . . . . . . . . . . . 14 ((Fun 𝐶𝐵 ⊆ dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
326, 30, 31syl2an 595 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (recs(𝐹) ↾ 𝐵))
33 reseq2 5875 . . . . . . . . . . . . . . 15 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = (recs(𝐹) ↾ dom recs(𝐹)))
342tfrlem6 8184 . . . . . . . . . . . . . . . 16 Rel recs(𝐹)
35 resdm 5925 . . . . . . . . . . . . . . . 16 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
3733, 36eqtrdi 2795 . . . . . . . . . . . . . 14 (𝐵 = dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3837adantl 481 . . . . . . . . . . . . 13 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
3932, 38eqtrd 2778 . . . . . . . . . . . 12 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = recs(𝐹))
4039fveq2d 6760 . . . . . . . . . . 11 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐹‘(𝐶𝐵)) = (𝐹‘recs(𝐹)))
4140opeq2d 4808 . . . . . . . . . 10 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨dom recs(𝐹), (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4229, 41eqtrd 2778 . . . . . . . . 9 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ = ⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩)
4342sneqd 4570 . . . . . . . 8 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → {⟨𝐵, (𝐹‘(𝐶𝐵))⟩} = {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
4427, 43eleqtrid 2845 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
45 elun2 4107 . . . . . . 7 (⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩} → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4644, 45syl 17 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
4746, 3eleqtrrdi 2850 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶)
48 simpr 484 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 = dom recs(𝐹))
49 sucidg 6329 . . . . . . . 8 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
5049adantr 480 . . . . . . 7 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → dom recs(𝐹) ∈ suc dom recs(𝐹))
5148, 50eqeltrd 2839 . . . . . 6 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → 𝐵 ∈ suc dom recs(𝐹))
52 fnopfvb 6805 . . . . . 6 ((𝐶 Fn suc dom recs(𝐹) ∧ 𝐵 ∈ suc dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
534, 51, 52syl2an2r 681 . . . . 5 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → ((𝐶𝐵) = (𝐹‘(𝐶𝐵)) ↔ ⟨𝐵, (𝐹‘(𝐶𝐵))⟩ ∈ 𝐶))
5447, 53mpbird 256 . . . 4 ((dom recs(𝐹) ∈ On ∧ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵)))
5554ex 412 . . 3 (dom recs(𝐹) ∈ On → (𝐵 = dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
5625, 55jaod 855 . 2 (dom recs(𝐹) ∈ On → ((𝐵 ∈ dom recs(𝐹) ∨ 𝐵 = dom recs(𝐹)) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
571, 56syl5 34 1 (dom recs(𝐹) ∈ On → (𝐵 ∈ suc dom recs(𝐹) → (𝐶𝐵) = (𝐹‘(𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  cun 3881  wss 3883  {csn 4558  cop 4564  dom cdm 5580  cres 5582  Rel wrel 5585  Oncon0 6251  suc csuc 6253  Fun wfun 6412   Fn wfn 6413  cfv 6418  recscrecs 8172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173
This theorem is referenced by:  tfrlem12  8191
  Copyright terms: Public domain W3C validator