MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txdis Structured version   Visualization version   GIF version

Theorem txdis 22235
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))

Proof of Theorem txdis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21598 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 distop 21598 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ∈ Top)
3 unipw 5320 . . . . . . 7 𝒫 𝐴 = 𝐴
43eqcomi 2831 . . . . . 6 𝐴 = 𝒫 𝐴
5 unipw 5320 . . . . . . 7 𝒫 𝐵 = 𝐵
65eqcomi 2831 . . . . . 6 𝐵 = 𝒫 𝐵
74, 6txuni 22195 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
81, 2, 7syl2an 598 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
9 eqimss2 3999 . . . 4 ((𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
108, 9syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
11 sspwuni 4997 . . 3 ((𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
1210, 11sylibr 237 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵))
13 elelpwi 4523 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵))
1413adantl 485 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵))
15 xp1st 7707 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (1st𝑦) ∈ 𝐴)
16 snelpwi 5314 . . . . . . . 8 ((1st𝑦) ∈ 𝐴 → {(1st𝑦)} ∈ 𝒫 𝐴)
1714, 15, 163syl 18 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st𝑦)} ∈ 𝒫 𝐴)
18 xp2nd 7708 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (2nd𝑦) ∈ 𝐵)
19 snelpwi 5314 . . . . . . . 8 ((2nd𝑦) ∈ 𝐵 → {(2nd𝑦)} ∈ 𝒫 𝐵)
2014, 18, 193syl 18 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd𝑦)} ∈ 𝒫 𝐵)
21 vsnid 4576 . . . . . . . 8 𝑦 ∈ {𝑦}
22 1st2nd2 7714 . . . . . . . . . 10 (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2314, 22syl 17 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2423sneqd 4551 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {⟨(1st𝑦), (2nd𝑦)⟩})
2521, 24eleqtrid 2920 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩})
26 simprl 770 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦𝑥)
2723, 26eqeltrrd 2915 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
2827snssd 4715 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)
29 xpeq1 5546 . . . . . . . . . 10 (𝑧 = {(1st𝑦)} → (𝑧 × 𝑤) = ({(1st𝑦)} × 𝑤))
3029eleq2d 2899 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st𝑦)} × 𝑤)))
3129sseq1d 3973 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st𝑦)} × 𝑤) ⊆ 𝑥))
3230, 31anbi12d 633 . . . . . . . 8 (𝑧 = {(1st𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥)))
33 xpeq2 5553 . . . . . . . . . . 11 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = ({(1st𝑦)} × {(2nd𝑦)}))
34 fvex 6665 . . . . . . . . . . . 12 (1st𝑦) ∈ V
35 fvex 6665 . . . . . . . . . . . 12 (2nd𝑦) ∈ V
3634, 35xpsn 6885 . . . . . . . . . . 11 ({(1st𝑦)} × {(2nd𝑦)}) = {⟨(1st𝑦), (2nd𝑦)⟩}
3733, 36syl6eq 2873 . . . . . . . . . 10 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = {⟨(1st𝑦), (2nd𝑦)⟩})
3837eleq2d 2899 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (𝑦 ∈ ({(1st𝑦)} × 𝑤) ↔ 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩}))
3937sseq1d 3973 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (({(1st𝑦)} × 𝑤) ⊆ 𝑥 ↔ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥))
4038, 39anbi12d 633 . . . . . . . 8 (𝑤 = {(2nd𝑦)} → ((𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)))
4132, 40rspc2ev 3610 . . . . . . 7 (({(1st𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4217, 20, 25, 28, 41syl112anc 1371 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4342expr 460 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝑦𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4443ralrimdva 3179 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
45 eltx 22171 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
461, 2, 45syl2an 598 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4744, 46sylibrd 262 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵)))
4847ssrdv 3948 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵))
4912, 48eqssd 3959 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wral 3130  wrex 3131  wss 3908  𝒫 cpw 4511  {csn 4539  cop 4545   cuni 4813   × cxp 5530  cfv 6334  (class class class)co 7140  1st c1st 7673  2nd c2nd 7674  Topctop 21496   ×t ctx 22163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-topgen 16708  df-top 21497  df-topon 21514  df-bases 21549  df-tx 22165
This theorem is referenced by:  distgp  22702
  Copyright terms: Public domain W3C validator