Step | Hyp | Ref
| Expression |
1 | | distop 22053 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
2 | | distop 22053 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ Top) |
3 | | unipw 5360 |
. . . . . . 7
⊢ ∪ 𝒫 𝐴 = 𝐴 |
4 | 3 | eqcomi 2747 |
. . . . . 6
⊢ 𝐴 = ∪
𝒫 𝐴 |
5 | | unipw 5360 |
. . . . . . 7
⊢ ∪ 𝒫 𝐵 = 𝐵 |
6 | 5 | eqcomi 2747 |
. . . . . 6
⊢ 𝐵 = ∪
𝒫 𝐵 |
7 | 4, 6 | txuni 22651 |
. . . . 5
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐵
∈ Top) → (𝐴
× 𝐵) = ∪ (𝒫 𝐴 ×t 𝒫 𝐵)) |
8 | 1, 2, 7 | syl2an 595 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) = ∪ (𝒫
𝐴 ×t
𝒫 𝐵)) |
9 | | eqimss2 3974 |
. . . 4
⊢ ((𝐴 × 𝐵) = ∪ (𝒫
𝐴 ×t
𝒫 𝐵) → ∪ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) |
10 | 8, 9 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪
(𝒫 𝐴
×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) |
11 | | sspwuni 5025 |
. . 3
⊢
((𝒫 𝐴
×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ ∪
(𝒫 𝐴
×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) |
12 | 10, 11 | sylibr 233 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵)) |
13 | | elelpwi 4542 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵)) |
14 | 13 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵)) |
15 | | xp1st 7836 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐴 × 𝐵) → (1st ‘𝑦) ∈ 𝐴) |
16 | | snelpwi 5354 |
. . . . . . . 8
⊢
((1st ‘𝑦) ∈ 𝐴 → {(1st ‘𝑦)} ∈ 𝒫 𝐴) |
17 | 14, 15, 16 | 3syl 18 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st ‘𝑦)} ∈ 𝒫 𝐴) |
18 | | xp2nd 7837 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐴 × 𝐵) → (2nd ‘𝑦) ∈ 𝐵) |
19 | | snelpwi 5354 |
. . . . . . . 8
⊢
((2nd ‘𝑦) ∈ 𝐵 → {(2nd ‘𝑦)} ∈ 𝒫 𝐵) |
20 | 14, 18, 19 | 3syl 18 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd ‘𝑦)} ∈ 𝒫 𝐵) |
21 | | vsnid 4595 |
. . . . . . . 8
⊢ 𝑦 ∈ {𝑦} |
22 | | 1st2nd2 7843 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
23 | 14, 22 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
24 | 23 | sneqd 4570 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {〈(1st ‘𝑦), (2nd ‘𝑦)〉}) |
25 | 21, 24 | eleqtrid 2845 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉}) |
26 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ 𝑥) |
27 | 23, 26 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 〈(1st
‘𝑦), (2nd
‘𝑦)〉 ∈
𝑥) |
28 | 27 | snssd 4739 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {〈(1st
‘𝑦), (2nd
‘𝑦)〉} ⊆
𝑥) |
29 | | xpeq1 5594 |
. . . . . . . . . 10
⊢ (𝑧 = {(1st ‘𝑦)} → (𝑧 × 𝑤) = ({(1st ‘𝑦)} × 𝑤)) |
30 | 29 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑧 = {(1st ‘𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st ‘𝑦)} × 𝑤))) |
31 | 29 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑧 = {(1st ‘𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥)) |
32 | 30, 31 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑧 = {(1st ‘𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ∧ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥))) |
33 | | xpeq2 5601 |
. . . . . . . . . . 11
⊢ (𝑤 = {(2nd ‘𝑦)} → ({(1st
‘𝑦)} × 𝑤) = ({(1st
‘𝑦)} ×
{(2nd ‘𝑦)})) |
34 | | fvex 6769 |
. . . . . . . . . . . 12
⊢
(1st ‘𝑦) ∈ V |
35 | | fvex 6769 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝑦) ∈ V |
36 | 34, 35 | xpsn 6995 |
. . . . . . . . . . 11
⊢
({(1st ‘𝑦)} × {(2nd ‘𝑦)}) = {〈(1st
‘𝑦), (2nd
‘𝑦)〉} |
37 | 33, 36 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑤 = {(2nd ‘𝑦)} → ({(1st
‘𝑦)} × 𝑤) = {〈(1st
‘𝑦), (2nd
‘𝑦)〉}) |
38 | 37 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑤 = {(2nd ‘𝑦)} → (𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ↔ 𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉})) |
39 | 37 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑤 = {(2nd ‘𝑦)} → (({(1st
‘𝑦)} × 𝑤) ⊆ 𝑥 ↔ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥)) |
40 | 38, 39 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑤 = {(2nd ‘𝑦)} → ((𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ∧ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ∧
{〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥))) |
41 | 32, 40 | rspc2ev 3564 |
. . . . . . 7
⊢
(({(1st ‘𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd ‘𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ∧
{〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) |
42 | 17, 20, 25, 28, 41 | syl112anc 1372 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) |
43 | 42 | expr 456 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
44 | 43 | ralrimdva 3112 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
45 | | eltx 22627 |
. . . . 5
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐵
∈ Top) → (𝑥
∈ (𝒫 𝐴
×t 𝒫 𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
46 | 1, 2, 45 | syl2an 595 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
47 | 44, 46 | sylibrd 258 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵))) |
48 | 47 | ssrdv 3923 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵)) |
49 | 12, 48 | eqssd 3934 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) |