| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | distop 23003 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | 
| 2 |  | distop 23003 | . . . . 5
⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ Top) | 
| 3 |  | unipw 5454 | . . . . . . 7
⊢ ∪ 𝒫 𝐴 = 𝐴 | 
| 4 | 3 | eqcomi 2745 | . . . . . 6
⊢ 𝐴 = ∪
𝒫 𝐴 | 
| 5 |  | unipw 5454 | . . . . . . 7
⊢ ∪ 𝒫 𝐵 = 𝐵 | 
| 6 | 5 | eqcomi 2745 | . . . . . 6
⊢ 𝐵 = ∪
𝒫 𝐵 | 
| 7 | 4, 6 | txuni 23601 | . . . . 5
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐵
∈ Top) → (𝐴
× 𝐵) = ∪ (𝒫 𝐴 ×t 𝒫 𝐵)) | 
| 8 | 1, 2, 7 | syl2an 596 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) = ∪ (𝒫
𝐴 ×t
𝒫 𝐵)) | 
| 9 |  | eqimss2 4042 | . . . 4
⊢ ((𝐴 × 𝐵) = ∪ (𝒫
𝐴 ×t
𝒫 𝐵) → ∪ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) | 
| 10 | 8, 9 | syl 17 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪
(𝒫 𝐴
×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) | 
| 11 |  | sspwuni 5099 | . . 3
⊢
((𝒫 𝐴
×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ ∪
(𝒫 𝐴
×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) | 
| 12 | 10, 11 | sylibr 234 | . 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵)) | 
| 13 |  | elelpwi 4609 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵)) | 
| 14 | 13 | adantl 481 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵)) | 
| 15 |  | xp1st 8047 | . . . . . . . 8
⊢ (𝑦 ∈ (𝐴 × 𝐵) → (1st ‘𝑦) ∈ 𝐴) | 
| 16 |  | snelpwi 5447 | . . . . . . . 8
⊢
((1st ‘𝑦) ∈ 𝐴 → {(1st ‘𝑦)} ∈ 𝒫 𝐴) | 
| 17 | 14, 15, 16 | 3syl 18 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st ‘𝑦)} ∈ 𝒫 𝐴) | 
| 18 |  | xp2nd 8048 | . . . . . . . 8
⊢ (𝑦 ∈ (𝐴 × 𝐵) → (2nd ‘𝑦) ∈ 𝐵) | 
| 19 |  | snelpwi 5447 | . . . . . . . 8
⊢
((2nd ‘𝑦) ∈ 𝐵 → {(2nd ‘𝑦)} ∈ 𝒫 𝐵) | 
| 20 | 14, 18, 19 | 3syl 18 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd ‘𝑦)} ∈ 𝒫 𝐵) | 
| 21 |  | vsnid 4662 | . . . . . . . 8
⊢ 𝑦 ∈ {𝑦} | 
| 22 |  | 1st2nd2 8054 | . . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | 
| 23 | 14, 22 | syl 17 | . . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | 
| 24 | 23 | sneqd 4637 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {〈(1st ‘𝑦), (2nd ‘𝑦)〉}) | 
| 25 | 21, 24 | eleqtrid 2846 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉}) | 
| 26 |  | simprl 770 | . . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ 𝑥) | 
| 27 | 23, 26 | eqeltrrd 2841 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 〈(1st
‘𝑦), (2nd
‘𝑦)〉 ∈
𝑥) | 
| 28 | 27 | snssd 4808 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {〈(1st
‘𝑦), (2nd
‘𝑦)〉} ⊆
𝑥) | 
| 29 |  | xpeq1 5698 | . . . . . . . . . 10
⊢ (𝑧 = {(1st ‘𝑦)} → (𝑧 × 𝑤) = ({(1st ‘𝑦)} × 𝑤)) | 
| 30 | 29 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝑧 = {(1st ‘𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st ‘𝑦)} × 𝑤))) | 
| 31 | 29 | sseq1d 4014 | . . . . . . . . 9
⊢ (𝑧 = {(1st ‘𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥)) | 
| 32 | 30, 31 | anbi12d 632 | . . . . . . . 8
⊢ (𝑧 = {(1st ‘𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ∧ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥))) | 
| 33 |  | xpeq2 5705 | . . . . . . . . . . 11
⊢ (𝑤 = {(2nd ‘𝑦)} → ({(1st
‘𝑦)} × 𝑤) = ({(1st
‘𝑦)} ×
{(2nd ‘𝑦)})) | 
| 34 |  | fvex 6918 | . . . . . . . . . . . 12
⊢
(1st ‘𝑦) ∈ V | 
| 35 |  | fvex 6918 | . . . . . . . . . . . 12
⊢
(2nd ‘𝑦) ∈ V | 
| 36 | 34, 35 | xpsn 7160 | . . . . . . . . . . 11
⊢
({(1st ‘𝑦)} × {(2nd ‘𝑦)}) = {〈(1st
‘𝑦), (2nd
‘𝑦)〉} | 
| 37 | 33, 36 | eqtrdi 2792 | . . . . . . . . . 10
⊢ (𝑤 = {(2nd ‘𝑦)} → ({(1st
‘𝑦)} × 𝑤) = {〈(1st
‘𝑦), (2nd
‘𝑦)〉}) | 
| 38 | 37 | eleq2d 2826 | . . . . . . . . 9
⊢ (𝑤 = {(2nd ‘𝑦)} → (𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ↔ 𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉})) | 
| 39 | 37 | sseq1d 4014 | . . . . . . . . 9
⊢ (𝑤 = {(2nd ‘𝑦)} → (({(1st
‘𝑦)} × 𝑤) ⊆ 𝑥 ↔ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥)) | 
| 40 | 38, 39 | anbi12d 632 | . . . . . . . 8
⊢ (𝑤 = {(2nd ‘𝑦)} → ((𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ∧ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ∧
{〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥))) | 
| 41 | 32, 40 | rspc2ev 3634 | . . . . . . 7
⊢
(({(1st ‘𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd ‘𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ∧
{〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) | 
| 42 | 17, 20, 25, 28, 41 | syl112anc 1375 | . . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) | 
| 43 | 42 | expr 456 | . . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) | 
| 44 | 43 | ralrimdva 3153 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) | 
| 45 |  | eltx 23577 | . . . . 5
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐵
∈ Top) → (𝑥
∈ (𝒫 𝐴
×t 𝒫 𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) | 
| 46 | 1, 2, 45 | syl2an 596 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) | 
| 47 | 44, 46 | sylibrd 259 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵))) | 
| 48 | 47 | ssrdv 3988 | . 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵)) | 
| 49 | 12, 48 | eqssd 4000 | 1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) |