MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txdis Structured version   Visualization version   GIF version

Theorem txdis 23517
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))

Proof of Theorem txdis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 22880 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 distop 22880 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ∈ Top)
3 unipw 5393 . . . . . . 7 𝒫 𝐴 = 𝐴
43eqcomi 2738 . . . . . 6 𝐴 = 𝒫 𝐴
5 unipw 5393 . . . . . . 7 𝒫 𝐵 = 𝐵
65eqcomi 2738 . . . . . 6 𝐵 = 𝒫 𝐵
74, 6txuni 23477 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
81, 2, 7syl2an 596 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
9 eqimss2 3995 . . . 4 ((𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
108, 9syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
11 sspwuni 5049 . . 3 ((𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
1210, 11sylibr 234 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵))
13 elelpwi 4561 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵))
1413adantl 481 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵))
15 xp1st 7956 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (1st𝑦) ∈ 𝐴)
16 snelpwi 5386 . . . . . . . 8 ((1st𝑦) ∈ 𝐴 → {(1st𝑦)} ∈ 𝒫 𝐴)
1714, 15, 163syl 18 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st𝑦)} ∈ 𝒫 𝐴)
18 xp2nd 7957 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (2nd𝑦) ∈ 𝐵)
19 snelpwi 5386 . . . . . . . 8 ((2nd𝑦) ∈ 𝐵 → {(2nd𝑦)} ∈ 𝒫 𝐵)
2014, 18, 193syl 18 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd𝑦)} ∈ 𝒫 𝐵)
21 vsnid 4615 . . . . . . . 8 𝑦 ∈ {𝑦}
22 1st2nd2 7963 . . . . . . . . . 10 (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2314, 22syl 17 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2423sneqd 4589 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {⟨(1st𝑦), (2nd𝑦)⟩})
2521, 24eleqtrid 2834 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩})
26 simprl 770 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦𝑥)
2723, 26eqeltrrd 2829 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
2827snssd 4760 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)
29 xpeq1 5633 . . . . . . . . . 10 (𝑧 = {(1st𝑦)} → (𝑧 × 𝑤) = ({(1st𝑦)} × 𝑤))
3029eleq2d 2814 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st𝑦)} × 𝑤)))
3129sseq1d 3967 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st𝑦)} × 𝑤) ⊆ 𝑥))
3230, 31anbi12d 632 . . . . . . . 8 (𝑧 = {(1st𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥)))
33 xpeq2 5640 . . . . . . . . . . 11 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = ({(1st𝑦)} × {(2nd𝑦)}))
34 fvex 6835 . . . . . . . . . . . 12 (1st𝑦) ∈ V
35 fvex 6835 . . . . . . . . . . . 12 (2nd𝑦) ∈ V
3634, 35xpsn 7075 . . . . . . . . . . 11 ({(1st𝑦)} × {(2nd𝑦)}) = {⟨(1st𝑦), (2nd𝑦)⟩}
3733, 36eqtrdi 2780 . . . . . . . . . 10 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = {⟨(1st𝑦), (2nd𝑦)⟩})
3837eleq2d 2814 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (𝑦 ∈ ({(1st𝑦)} × 𝑤) ↔ 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩}))
3937sseq1d 3967 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (({(1st𝑦)} × 𝑤) ⊆ 𝑥 ↔ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥))
4038, 39anbi12d 632 . . . . . . . 8 (𝑤 = {(2nd𝑦)} → ((𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)))
4132, 40rspc2ev 3590 . . . . . . 7 (({(1st𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4217, 20, 25, 28, 41syl112anc 1376 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4342expr 456 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝑦𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4443ralrimdva 3129 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
45 eltx 23453 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
461, 2, 45syl2an 596 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4744, 46sylibrd 259 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵)))
4847ssrdv 3941 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵))
4912, 48eqssd 3953 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903  𝒫 cpw 4551  {csn 4577  cop 4583   cuni 4858   × cxp 5617  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Topctop 22778   ×t ctx 23445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-tx 23447
This theorem is referenced by:  distgp  23984
  Copyright terms: Public domain W3C validator