![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqelsuc | Structured version Visualization version GIF version |
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
eqelsuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqelsuc | ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelsuc.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | sucid 6446 | . 2 ⊢ 𝐴 ∈ suc 𝐴 |
3 | suceq 6430 | . 2 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | |
4 | 2, 3 | eleqtrid 2838 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-sn 4629 df-suc 6370 |
This theorem is referenced by: pssnn 9174 pssnnOLD 9271 |
Copyright terms: Public domain | W3C validator |