Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankeq1o Structured version   Visualization version   GIF version

Theorem rankeq1o 34470
Description: The only set with rank 1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
Assertion
Ref Expression
rankeq1o ((rank‘𝐴) = 1o𝐴 = {∅})

Proof of Theorem rankeq1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8316 . . . . . . 7 1o ≠ ∅
2 neeq1 3006 . . . . . . 7 ((rank‘𝐴) = 1o → ((rank‘𝐴) ≠ ∅ ↔ 1o ≠ ∅))
31, 2mpbiri 257 . . . . . 6 ((rank‘𝐴) = 1o → (rank‘𝐴) ≠ ∅)
43neneqd 2948 . . . . 5 ((rank‘𝐴) = 1o → ¬ (rank‘𝐴) = ∅)
5 fvprc 6768 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
64, 5nsyl2 141 . . . 4 ((rank‘𝐴) = 1o𝐴 ∈ V)
7 fveqeq2 6785 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝑥) = 1o ↔ (rank‘𝐴) = 1o))
8 eqeq1 2742 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 1o𝐴 = 1o))
97, 8imbi12d 345 . . . . 5 (𝑥 = 𝐴 → (((rank‘𝑥) = 1o𝑥 = 1o) ↔ ((rank‘𝐴) = 1o𝐴 = 1o)))
10 neeq1 3006 . . . . . . . 8 ((rank‘𝑥) = 1o → ((rank‘𝑥) ≠ ∅ ↔ 1o ≠ ∅))
111, 10mpbiri 257 . . . . . . 7 ((rank‘𝑥) = 1o → (rank‘𝑥) ≠ ∅)
12 vex 3435 . . . . . . . . 9 𝑥 ∈ V
1312rankeq0 9617 . . . . . . . 8 (𝑥 = ∅ ↔ (rank‘𝑥) = ∅)
1413necon3bii 2996 . . . . . . 7 (𝑥 ≠ ∅ ↔ (rank‘𝑥) ≠ ∅)
1511, 14sylibr 233 . . . . . 6 ((rank‘𝑥) = 1o𝑥 ≠ ∅)
1612rankval 9572 . . . . . . . 8 (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
1716eqeq1i 2743 . . . . . . 7 ((rank‘𝑥) = 1o {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o)
18 ssrab2 4014 . . . . . . . . . . 11 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
19 elirr 9354 . . . . . . . . . . . . . 14 ¬ 1o ∈ 1o
20 1oex 8305 . . . . . . . . . . . . . . 15 1o ∈ V
21 id 22 . . . . . . . . . . . . . . 15 (V = 1o → V = 1o)
2220, 21eleqtrid 2845 . . . . . . . . . . . . . 14 (V = 1o → 1o ∈ 1o)
2319, 22mto 196 . . . . . . . . . . . . 13 ¬ V = 1o
24 inteq 4884 . . . . . . . . . . . . . . 15 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅)
25 int0 4895 . . . . . . . . . . . . . . 15 ∅ = V
2624, 25eqtrdi 2794 . . . . . . . . . . . . . 14 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = V)
2726eqeq1d 2740 . . . . . . . . . . . . 13 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o ↔ V = 1o))
2823, 27mtbiri 327 . . . . . . . . . . . 12 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ¬ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o)
2928necon2ai 2973 . . . . . . . . . . 11 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
30 onint 7640 . . . . . . . . . . 11 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
3118, 29, 30sylancr 587 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
32 eleq1 2826 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}))
3331, 32mpbid 231 . . . . . . . . 9 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → 1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
34 suceq 6333 . . . . . . . . . . . . 13 (𝑦 = 1o → suc 𝑦 = suc 1o)
3534fveq2d 6780 . . . . . . . . . . . 12 (𝑦 = 1o → (𝑅1‘suc 𝑦) = (𝑅1‘suc 1o))
36 df-1o 8295 . . . . . . . . . . . . . . . . 17 1o = suc ∅
3736fveq2i 6779 . . . . . . . . . . . . . . . 16 (𝑅1‘1o) = (𝑅1‘suc ∅)
38 0elon 6321 . . . . . . . . . . . . . . . . 17 ∅ ∈ On
39 r1suc 9526 . . . . . . . . . . . . . . . . 17 (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)
41 r10 9524 . . . . . . . . . . . . . . . . 17 (𝑅1‘∅) = ∅
4241pweqi 4553 . . . . . . . . . . . . . . . 16 𝒫 (𝑅1‘∅) = 𝒫 ∅
4337, 40, 423eqtri 2770 . . . . . . . . . . . . . . 15 (𝑅1‘1o) = 𝒫 ∅
4443pweqi 4553 . . . . . . . . . . . . . 14 𝒫 (𝑅1‘1o) = 𝒫 𝒫 ∅
45 pw0 4747 . . . . . . . . . . . . . . 15 𝒫 ∅ = {∅}
4645pweqi 4553 . . . . . . . . . . . . . 14 𝒫 𝒫 ∅ = 𝒫 {∅}
47 pwpw0 4748 . . . . . . . . . . . . . 14 𝒫 {∅} = {∅, {∅}}
4844, 46, 473eqtrri 2771 . . . . . . . . . . . . 13 {∅, {∅}} = 𝒫 (𝑅1‘1o)
49 1on 8307 . . . . . . . . . . . . . 14 1o ∈ On
50 r1suc 9526 . . . . . . . . . . . . . 14 (1o ∈ On → (𝑅1‘suc 1o) = 𝒫 (𝑅1‘1o))
5149, 50ax-mp 5 . . . . . . . . . . . . 13 (𝑅1‘suc 1o) = 𝒫 (𝑅1‘1o)
5248, 51eqtr4i 2769 . . . . . . . . . . . 12 {∅, {∅}} = (𝑅1‘suc 1o)
5335, 52eqtr4di 2796 . . . . . . . . . . 11 (𝑦 = 1o → (𝑅1‘suc 𝑦) = {∅, {∅}})
5453eleq2d 2824 . . . . . . . . . 10 (𝑦 = 1o → (𝑥 ∈ (𝑅1‘suc 𝑦) ↔ 𝑥 ∈ {∅, {∅}}))
5554elrab 3625 . . . . . . . . 9 (1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ (1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5633, 55sylib 217 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → (1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5712elpr 4586 . . . . . . . . . 10 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
58 df-ne 2944 . . . . . . . . . . . 12 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
59 orel1 886 . . . . . . . . . . . 12 𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
6058, 59sylbi 216 . . . . . . . . . . 11 (𝑥 ≠ ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
61 df1o2 8302 . . . . . . . . . . . . 13 1o = {∅}
62 eqeq2 2750 . . . . . . . . . . . . 13 (𝑥 = {∅} → (1o = 𝑥 ↔ 1o = {∅}))
6361, 62mpbiri 257 . . . . . . . . . . . 12 (𝑥 = {∅} → 1o = 𝑥)
6463eqcomd 2744 . . . . . . . . . . 11 (𝑥 = {∅} → 𝑥 = 1o)
6560, 64syl6com 37 . . . . . . . . . 10 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 ≠ ∅ → 𝑥 = 1o))
6657, 65sylbi 216 . . . . . . . . 9 (𝑥 ∈ {∅, {∅}} → (𝑥 ≠ ∅ → 𝑥 = 1o))
6766adantl 482 . . . . . . . 8 ((1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}) → (𝑥 ≠ ∅ → 𝑥 = 1o))
6856, 67syl 17 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → (𝑥 ≠ ∅ → 𝑥 = 1o))
6917, 68sylbi 216 . . . . . 6 ((rank‘𝑥) = 1o → (𝑥 ≠ ∅ → 𝑥 = 1o))
7015, 69mpd 15 . . . . 5 ((rank‘𝑥) = 1o𝑥 = 1o)
719, 70vtoclg 3504 . . . 4 (𝐴 ∈ V → ((rank‘𝐴) = 1o𝐴 = 1o))
726, 71mpcom 38 . . 3 ((rank‘𝐴) = 1o𝐴 = 1o)
73 fveq2 6776 . . . 4 (𝐴 = 1o → (rank‘𝐴) = (rank‘1o))
74 r111 9531 . . . . . . 7 𝑅1:On–1-1→V
75 f1dm 6676 . . . . . . 7 (𝑅1:On–1-1→V → dom 𝑅1 = On)
7674, 75ax-mp 5 . . . . . 6 dom 𝑅1 = On
7749, 76eleqtrri 2838 . . . . 5 1o ∈ dom 𝑅1
78 rankonid 9585 . . . . 5 (1o ∈ dom 𝑅1 ↔ (rank‘1o) = 1o)
7977, 78mpbi 229 . . . 4 (rank‘1o) = 1o
8073, 79eqtrdi 2794 . . 3 (𝐴 = 1o → (rank‘𝐴) = 1o)
8172, 80impbii 208 . 2 ((rank‘𝐴) = 1o𝐴 = 1o)
8261eqeq2i 2751 . 2 (𝐴 = 1o𝐴 = {∅})
8381, 82bitri 274 1 ((rank‘𝐴) = 1o𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3431  wss 3888  c0 4258  𝒫 cpw 4535  {csn 4563  {cpr 4565   cint 4881  dom cdm 5591  Oncon0 6268  suc csuc 6270  1-1wf1 6432  cfv 6435  1oc1o 8288  𝑅1cr1 9518  rankcrnk 9519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-reg 9349  ax-inf2 9397
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-r1 9520  df-rank 9521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator