Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankeq1o Structured version   Visualization version   GIF version

Theorem rankeq1o 36172
Description: The only set with rank 1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
Assertion
Ref Expression
rankeq1o ((rank‘𝐴) = 1o𝐴 = {∅})

Proof of Theorem rankeq1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8526 . . . . . . 7 1o ≠ ∅
2 neeq1 3003 . . . . . . 7 ((rank‘𝐴) = 1o → ((rank‘𝐴) ≠ ∅ ↔ 1o ≠ ∅))
31, 2mpbiri 258 . . . . . 6 ((rank‘𝐴) = 1o → (rank‘𝐴) ≠ ∅)
43neneqd 2945 . . . . 5 ((rank‘𝐴) = 1o → ¬ (rank‘𝐴) = ∅)
5 fvprc 6898 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
64, 5nsyl2 141 . . . 4 ((rank‘𝐴) = 1o𝐴 ∈ V)
7 fveqeq2 6915 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝑥) = 1o ↔ (rank‘𝐴) = 1o))
8 eqeq1 2741 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 1o𝐴 = 1o))
97, 8imbi12d 344 . . . . 5 (𝑥 = 𝐴 → (((rank‘𝑥) = 1o𝑥 = 1o) ↔ ((rank‘𝐴) = 1o𝐴 = 1o)))
10 neeq1 3003 . . . . . . . 8 ((rank‘𝑥) = 1o → ((rank‘𝑥) ≠ ∅ ↔ 1o ≠ ∅))
111, 10mpbiri 258 . . . . . . 7 ((rank‘𝑥) = 1o → (rank‘𝑥) ≠ ∅)
12 vex 3484 . . . . . . . . 9 𝑥 ∈ V
1312rankeq0 9901 . . . . . . . 8 (𝑥 = ∅ ↔ (rank‘𝑥) = ∅)
1413necon3bii 2993 . . . . . . 7 (𝑥 ≠ ∅ ↔ (rank‘𝑥) ≠ ∅)
1511, 14sylibr 234 . . . . . 6 ((rank‘𝑥) = 1o𝑥 ≠ ∅)
1612rankval 9856 . . . . . . . 8 (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
1716eqeq1i 2742 . . . . . . 7 ((rank‘𝑥) = 1o {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o)
18 ssrab2 4080 . . . . . . . . . . 11 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
19 elirr 9637 . . . . . . . . . . . . . 14 ¬ 1o ∈ 1o
20 1oex 8516 . . . . . . . . . . . . . . 15 1o ∈ V
21 id 22 . . . . . . . . . . . . . . 15 (V = 1o → V = 1o)
2220, 21eleqtrid 2847 . . . . . . . . . . . . . 14 (V = 1o → 1o ∈ 1o)
2319, 22mto 197 . . . . . . . . . . . . 13 ¬ V = 1o
24 inteq 4949 . . . . . . . . . . . . . . 15 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅)
25 int0 4962 . . . . . . . . . . . . . . 15 ∅ = V
2624, 25eqtrdi 2793 . . . . . . . . . . . . . 14 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = V)
2726eqeq1d 2739 . . . . . . . . . . . . 13 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o ↔ V = 1o))
2823, 27mtbiri 327 . . . . . . . . . . . 12 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ¬ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o)
2928necon2ai 2970 . . . . . . . . . . 11 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
30 onint 7810 . . . . . . . . . . 11 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
3118, 29, 30sylancr 587 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
32 eleq1 2829 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}))
3331, 32mpbid 232 . . . . . . . . 9 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → 1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
34 suceq 6450 . . . . . . . . . . . . 13 (𝑦 = 1o → suc 𝑦 = suc 1o)
3534fveq2d 6910 . . . . . . . . . . . 12 (𝑦 = 1o → (𝑅1‘suc 𝑦) = (𝑅1‘suc 1o))
36 df-1o 8506 . . . . . . . . . . . . . . . . 17 1o = suc ∅
3736fveq2i 6909 . . . . . . . . . . . . . . . 16 (𝑅1‘1o) = (𝑅1‘suc ∅)
38 0elon 6438 . . . . . . . . . . . . . . . . 17 ∅ ∈ On
39 r1suc 9810 . . . . . . . . . . . . . . . . 17 (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)
41 r10 9808 . . . . . . . . . . . . . . . . 17 (𝑅1‘∅) = ∅
4241pweqi 4616 . . . . . . . . . . . . . . . 16 𝒫 (𝑅1‘∅) = 𝒫 ∅
4337, 40, 423eqtri 2769 . . . . . . . . . . . . . . 15 (𝑅1‘1o) = 𝒫 ∅
4443pweqi 4616 . . . . . . . . . . . . . 14 𝒫 (𝑅1‘1o) = 𝒫 𝒫 ∅
45 pw0 4812 . . . . . . . . . . . . . . 15 𝒫 ∅ = {∅}
4645pweqi 4616 . . . . . . . . . . . . . 14 𝒫 𝒫 ∅ = 𝒫 {∅}
47 pwpw0 4813 . . . . . . . . . . . . . 14 𝒫 {∅} = {∅, {∅}}
4844, 46, 473eqtrri 2770 . . . . . . . . . . . . 13 {∅, {∅}} = 𝒫 (𝑅1‘1o)
49 1on 8518 . . . . . . . . . . . . . 14 1o ∈ On
50 r1suc 9810 . . . . . . . . . . . . . 14 (1o ∈ On → (𝑅1‘suc 1o) = 𝒫 (𝑅1‘1o))
5149, 50ax-mp 5 . . . . . . . . . . . . 13 (𝑅1‘suc 1o) = 𝒫 (𝑅1‘1o)
5248, 51eqtr4i 2768 . . . . . . . . . . . 12 {∅, {∅}} = (𝑅1‘suc 1o)
5335, 52eqtr4di 2795 . . . . . . . . . . 11 (𝑦 = 1o → (𝑅1‘suc 𝑦) = {∅, {∅}})
5453eleq2d 2827 . . . . . . . . . 10 (𝑦 = 1o → (𝑥 ∈ (𝑅1‘suc 𝑦) ↔ 𝑥 ∈ {∅, {∅}}))
5554elrab 3692 . . . . . . . . 9 (1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ (1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5633, 55sylib 218 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → (1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5712elpr 4650 . . . . . . . . . 10 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
58 df-ne 2941 . . . . . . . . . . . 12 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
59 orel1 889 . . . . . . . . . . . 12 𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
6058, 59sylbi 217 . . . . . . . . . . 11 (𝑥 ≠ ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
61 df1o2 8513 . . . . . . . . . . . . 13 1o = {∅}
62 eqeq2 2749 . . . . . . . . . . . . 13 (𝑥 = {∅} → (1o = 𝑥 ↔ 1o = {∅}))
6361, 62mpbiri 258 . . . . . . . . . . . 12 (𝑥 = {∅} → 1o = 𝑥)
6463eqcomd 2743 . . . . . . . . . . 11 (𝑥 = {∅} → 𝑥 = 1o)
6560, 64syl6com 37 . . . . . . . . . 10 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 ≠ ∅ → 𝑥 = 1o))
6657, 65sylbi 217 . . . . . . . . 9 (𝑥 ∈ {∅, {∅}} → (𝑥 ≠ ∅ → 𝑥 = 1o))
6766adantl 481 . . . . . . . 8 ((1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}) → (𝑥 ≠ ∅ → 𝑥 = 1o))
6856, 67syl 17 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → (𝑥 ≠ ∅ → 𝑥 = 1o))
6917, 68sylbi 217 . . . . . 6 ((rank‘𝑥) = 1o → (𝑥 ≠ ∅ → 𝑥 = 1o))
7015, 69mpd 15 . . . . 5 ((rank‘𝑥) = 1o𝑥 = 1o)
719, 70vtoclg 3554 . . . 4 (𝐴 ∈ V → ((rank‘𝐴) = 1o𝐴 = 1o))
726, 71mpcom 38 . . 3 ((rank‘𝐴) = 1o𝐴 = 1o)
73 fveq2 6906 . . . 4 (𝐴 = 1o → (rank‘𝐴) = (rank‘1o))
74 r111 9815 . . . . . . 7 𝑅1:On–1-1→V
75 f1dm 6808 . . . . . . 7 (𝑅1:On–1-1→V → dom 𝑅1 = On)
7674, 75ax-mp 5 . . . . . 6 dom 𝑅1 = On
7749, 76eleqtrri 2840 . . . . 5 1o ∈ dom 𝑅1
78 rankonid 9869 . . . . 5 (1o ∈ dom 𝑅1 ↔ (rank‘1o) = 1o)
7977, 78mpbi 230 . . . 4 (rank‘1o) = 1o
8073, 79eqtrdi 2793 . . 3 (𝐴 = 1o → (rank‘𝐴) = 1o)
8172, 80impbii 209 . 2 ((rank‘𝐴) = 1o𝐴 = 1o)
8261eqeq2i 2750 . 2 (𝐴 = 1o𝐴 = {∅})
8381, 82bitri 275 1 ((rank‘𝐴) = 1o𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626  {cpr 4628   cint 4946  dom cdm 5685  Oncon0 6384  suc csuc 6386  1-1wf1 6558  cfv 6561  1oc1o 8499  𝑅1cr1 9802  rankcrnk 9803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-r1 9804  df-rank 9805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator