Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankeq1o Structured version   Visualization version   GIF version

Theorem rankeq1o 36149
Description: The only set with rank 1o is the singleton of the empty set. (Contributed by Scott Fenton, 17-Jul-2015.)
Assertion
Ref Expression
rankeq1o ((rank‘𝐴) = 1o𝐴 = {∅})

Proof of Theorem rankeq1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 8406 . . . . . . 7 1o ≠ ∅
2 neeq1 2987 . . . . . . 7 ((rank‘𝐴) = 1o → ((rank‘𝐴) ≠ ∅ ↔ 1o ≠ ∅))
31, 2mpbiri 258 . . . . . 6 ((rank‘𝐴) = 1o → (rank‘𝐴) ≠ ∅)
43neneqd 2930 . . . . 5 ((rank‘𝐴) = 1o → ¬ (rank‘𝐴) = ∅)
5 fvprc 6814 . . . . 5 𝐴 ∈ V → (rank‘𝐴) = ∅)
64, 5nsyl2 141 . . . 4 ((rank‘𝐴) = 1o𝐴 ∈ V)
7 fveqeq2 6831 . . . . . 6 (𝑥 = 𝐴 → ((rank‘𝑥) = 1o ↔ (rank‘𝐴) = 1o))
8 eqeq1 2733 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = 1o𝐴 = 1o))
97, 8imbi12d 344 . . . . 5 (𝑥 = 𝐴 → (((rank‘𝑥) = 1o𝑥 = 1o) ↔ ((rank‘𝐴) = 1o𝐴 = 1o)))
10 neeq1 2987 . . . . . . . 8 ((rank‘𝑥) = 1o → ((rank‘𝑥) ≠ ∅ ↔ 1o ≠ ∅))
111, 10mpbiri 258 . . . . . . 7 ((rank‘𝑥) = 1o → (rank‘𝑥) ≠ ∅)
12 vex 3440 . . . . . . . . 9 𝑥 ∈ V
1312rankeq0 9757 . . . . . . . 8 (𝑥 = ∅ ↔ (rank‘𝑥) = ∅)
1413necon3bii 2977 . . . . . . 7 (𝑥 ≠ ∅ ↔ (rank‘𝑥) ≠ ∅)
1511, 14sylibr 234 . . . . . 6 ((rank‘𝑥) = 1o𝑥 ≠ ∅)
1612rankval 9712 . . . . . . . 8 (rank‘𝑥) = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}
1716eqeq1i 2734 . . . . . . 7 ((rank‘𝑥) = 1o {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o)
18 ssrab2 4031 . . . . . . . . . . 11 {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On
19 elirr 9491 . . . . . . . . . . . . . 14 ¬ 1o ∈ 1o
20 1oex 8398 . . . . . . . . . . . . . . 15 1o ∈ V
21 id 22 . . . . . . . . . . . . . . 15 (V = 1o → V = 1o)
2220, 21eleqtrid 2834 . . . . . . . . . . . . . 14 (V = 1o → 1o ∈ 1o)
2319, 22mto 197 . . . . . . . . . . . . 13 ¬ V = 1o
24 inteq 4899 . . . . . . . . . . . . . . 15 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅)
25 int0 4912 . . . . . . . . . . . . . . 15 ∅ = V
2624, 25eqtrdi 2780 . . . . . . . . . . . . . 14 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = V)
2726eqeq1d 2731 . . . . . . . . . . . . 13 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o ↔ V = 1o))
2823, 27mtbiri 327 . . . . . . . . . . . 12 ({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = ∅ → ¬ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o)
2928necon2ai 2954 . . . . . . . . . . 11 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅)
30 onint 7726 . . . . . . . . . . 11 (({𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ⊆ On ∧ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ≠ ∅) → {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
3118, 29, 30sylancr 587 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
32 eleq1 2816 . . . . . . . . . 10 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ 1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}))
3331, 32mpbid 232 . . . . . . . . 9 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → 1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
34 suceq 6375 . . . . . . . . . . . . 13 (𝑦 = 1o → suc 𝑦 = suc 1o)
3534fveq2d 6826 . . . . . . . . . . . 12 (𝑦 = 1o → (𝑅1‘suc 𝑦) = (𝑅1‘suc 1o))
36 df-1o 8388 . . . . . . . . . . . . . . . . 17 1o = suc ∅
3736fveq2i 6825 . . . . . . . . . . . . . . . 16 (𝑅1‘1o) = (𝑅1‘suc ∅)
38 0elon 6362 . . . . . . . . . . . . . . . . 17 ∅ ∈ On
39 r1suc 9666 . . . . . . . . . . . . . . . . 17 (∅ ∈ On → (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅))
4038, 39ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑅1‘suc ∅) = 𝒫 (𝑅1‘∅)
41 r10 9664 . . . . . . . . . . . . . . . . 17 (𝑅1‘∅) = ∅
4241pweqi 4567 . . . . . . . . . . . . . . . 16 𝒫 (𝑅1‘∅) = 𝒫 ∅
4337, 40, 423eqtri 2756 . . . . . . . . . . . . . . 15 (𝑅1‘1o) = 𝒫 ∅
4443pweqi 4567 . . . . . . . . . . . . . 14 𝒫 (𝑅1‘1o) = 𝒫 𝒫 ∅
45 pw0 4763 . . . . . . . . . . . . . . 15 𝒫 ∅ = {∅}
4645pweqi 4567 . . . . . . . . . . . . . 14 𝒫 𝒫 ∅ = 𝒫 {∅}
47 pwpw0 4764 . . . . . . . . . . . . . 14 𝒫 {∅} = {∅, {∅}}
4844, 46, 473eqtrri 2757 . . . . . . . . . . . . 13 {∅, {∅}} = 𝒫 (𝑅1‘1o)
49 1on 8400 . . . . . . . . . . . . . 14 1o ∈ On
50 r1suc 9666 . . . . . . . . . . . . . 14 (1o ∈ On → (𝑅1‘suc 1o) = 𝒫 (𝑅1‘1o))
5149, 50ax-mp 5 . . . . . . . . . . . . 13 (𝑅1‘suc 1o) = 𝒫 (𝑅1‘1o)
5248, 51eqtr4i 2755 . . . . . . . . . . . 12 {∅, {∅}} = (𝑅1‘suc 1o)
5335, 52eqtr4di 2782 . . . . . . . . . . 11 (𝑦 = 1o → (𝑅1‘suc 𝑦) = {∅, {∅}})
5453eleq2d 2814 . . . . . . . . . 10 (𝑦 = 1o → (𝑥 ∈ (𝑅1‘suc 𝑦) ↔ 𝑥 ∈ {∅, {∅}}))
5554elrab 3648 . . . . . . . . 9 (1o ∈ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} ↔ (1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5633, 55sylib 218 . . . . . . . 8 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → (1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}))
5712elpr 4602 . . . . . . . . . 10 (𝑥 ∈ {∅, {∅}} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
58 df-ne 2926 . . . . . . . . . . . 12 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
59 orel1 888 . . . . . . . . . . . 12 𝑥 = ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
6058, 59sylbi 217 . . . . . . . . . . 11 (𝑥 ≠ ∅ → ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 = {∅}))
61 df1o2 8395 . . . . . . . . . . . . 13 1o = {∅}
62 eqeq2 2741 . . . . . . . . . . . . 13 (𝑥 = {∅} → (1o = 𝑥 ↔ 1o = {∅}))
6361, 62mpbiri 258 . . . . . . . . . . . 12 (𝑥 = {∅} → 1o = 𝑥)
6463eqcomd 2735 . . . . . . . . . . 11 (𝑥 = {∅} → 𝑥 = 1o)
6560, 64syl6com 37 . . . . . . . . . 10 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → (𝑥 ≠ ∅ → 𝑥 = 1o))
6657, 65sylbi 217 . . . . . . . . 9 (𝑥 ∈ {∅, {∅}} → (𝑥 ≠ ∅ → 𝑥 = 1o))
6766adantl 481 . . . . . . . 8 ((1o ∈ On ∧ 𝑥 ∈ {∅, {∅}}) → (𝑥 ≠ ∅ → 𝑥 = 1o))
6856, 67syl 17 . . . . . . 7 ( {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)} = 1o → (𝑥 ≠ ∅ → 𝑥 = 1o))
6917, 68sylbi 217 . . . . . 6 ((rank‘𝑥) = 1o → (𝑥 ≠ ∅ → 𝑥 = 1o))
7015, 69mpd 15 . . . . 5 ((rank‘𝑥) = 1o𝑥 = 1o)
719, 70vtoclg 3509 . . . 4 (𝐴 ∈ V → ((rank‘𝐴) = 1o𝐴 = 1o))
726, 71mpcom 38 . . 3 ((rank‘𝐴) = 1o𝐴 = 1o)
73 fveq2 6822 . . . 4 (𝐴 = 1o → (rank‘𝐴) = (rank‘1o))
74 r111 9671 . . . . . . 7 𝑅1:On–1-1→V
75 f1dm 6724 . . . . . . 7 (𝑅1:On–1-1→V → dom 𝑅1 = On)
7674, 75ax-mp 5 . . . . . 6 dom 𝑅1 = On
7749, 76eleqtrri 2827 . . . . 5 1o ∈ dom 𝑅1
78 rankonid 9725 . . . . 5 (1o ∈ dom 𝑅1 ↔ (rank‘1o) = 1o)
7977, 78mpbi 230 . . . 4 (rank‘1o) = 1o
8073, 79eqtrdi 2780 . . 3 (𝐴 = 1o → (rank‘𝐴) = 1o)
8172, 80impbii 209 . 2 ((rank‘𝐴) = 1o𝐴 = 1o)
8261eqeq2i 2742 . 2 (𝐴 = 1o𝐴 = {∅})
8381, 82bitri 275 1 ((rank‘𝐴) = 1o𝐴 = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577  {cpr 4579   cint 4896  dom cdm 5619  Oncon0 6307  suc csuc 6309  1-1wf1 6479  cfv 6482  1oc1o 8381  𝑅1cr1 9658  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-r1 9660  df-rank 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator