MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalimcl Structured version   Visualization version   GIF version

Theorem oalimcl 8169
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. (Contributed by NM, 8-Dec-2004.)
Assertion
Ref Expression
oalimcl ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵))

Proof of Theorem oalimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 6222 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 oacl 8143 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
3 eloni 6169 . . . 4 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
42, 3syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
51, 4sylan2 595 . 2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴 +o 𝐵))
6 0ellim 6221 . . . . . 6 (Lim 𝐵 → ∅ ∈ 𝐵)
7 n0i 4249 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
86, 7syl 17 . . . . 5 (Lim 𝐵 → ¬ 𝐵 = ∅)
98ad2antll 728 . . . 4 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ 𝐵 = ∅)
10 oa00 8168 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
11 simpr 488 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐵 = ∅)
1210, 11syl6bi 256 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅))
1312con3d 155 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 = ∅ → ¬ (𝐴 +o 𝐵) = ∅))
141, 13sylan2 595 . . . 4 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (¬ 𝐵 = ∅ → ¬ (𝐴 +o 𝐵) = ∅))
159, 14mpd 15 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ (𝐴 +o 𝐵) = ∅)
16 vex 3444 . . . . . . . . . . 11 𝑦 ∈ V
1716sucid 6238 . . . . . . . . . 10 𝑦 ∈ suc 𝑦
18 oalim 8140 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥))
19 eqeq1 2802 . . . . . . . . . . . 12 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥) ↔ suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥)))
2018, 19syl5ib 247 . . . . . . . . . . 11 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥)))
2120imp 410 . . . . . . . . . 10 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥))
2217, 21eleqtrid 2896 . . . . . . . . 9 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → 𝑦 𝑥𝐵 (𝐴 +o 𝑥))
23 eliun 4885 . . . . . . . . 9 (𝑦 𝑥𝐵 (𝐴 +o 𝑥) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥))
2422, 23sylib 221 . . . . . . . 8 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → ∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥))
25 onelon 6184 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
261, 25sylan 583 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ On)
27 onnbtwn 6250 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
28 imnan 403 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥) ↔ ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
2927, 28sylibr 237 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥))
3029com12 32 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3130adantl 485 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3226, 31mpd 15 . . . . . . . . . . . . . 14 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → ¬ 𝐵 ∈ suc 𝑥)
3332ad2antrl 727 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ¬ 𝐵 ∈ suc 𝑥)
34 oacl 8143 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On)
35 eloni 6169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 +o 𝑥) ∈ On → Ord (𝐴 +o 𝑥))
36 ordsucelsuc 7517 . . . . . . . . . . . . . . . . . . . . . 22 (Ord (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
38 oasuc 8132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3938eleq2d 2875 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (suc 𝑦 ∈ (𝐴 +o suc 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
4037, 39bitr4d 285 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
4126, 40sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
42 eleq1 2877 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
4342bicomd 226 . . . . . . . . . . . . . . . . . . 19 ((𝐴 +o 𝐵) = suc 𝑦 → (suc 𝑦 ∈ (𝐴 +o suc 𝑥) ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
4441, 43sylan9bbr 514 . . . . . . . . . . . . . . . . . 18 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
451adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ On)
46 sucelon 7512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On ↔ suc 𝑥 ∈ On)
4726, 46sylib 221 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → suc 𝑥 ∈ On)
4845, 47jca 515 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝐵 ∈ On ∧ suc 𝑥 ∈ On))
49 oaord 8156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
50493expa 1115 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ On ∧ suc 𝑥 ∈ On) ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5148, 50sylan 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5251ancoms 462 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5352adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5444, 53bitr4d 285 . . . . . . . . . . . . . . . . 17 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ 𝐵 ∈ suc 𝑥))
5554biimpd 232 . . . . . . . . . . . . . . . 16 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) → 𝐵 ∈ suc 𝑥))
5655exp32 424 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) = suc 𝑦 → (𝐴 ∈ On → (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 +o 𝑥) → 𝐵 ∈ suc 𝑥))))
5756com4l 92 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 +o 𝑥) → ((𝐴 +o 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))))
5857imp32 422 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ((𝐴 +o 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))
5933, 58mtod 201 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6059exp44 441 . . . . . . . . . . 11 (𝐴 ∈ On → ((𝐵𝐶 ∧ Lim 𝐵) → (𝑥𝐵 → (𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))))
6160imp 410 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥𝐵 → (𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦)))
6261rexlimdv 3242 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6362adantl 485 . . . . . . . 8 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → (∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6424, 63mpd 15 . . . . . . 7 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6564expcom 417 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = suc 𝑦 → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6665pm2.01d 193 . . . . 5 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6766adantr 484 . . . 4 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ On) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6867nrexdv 3229 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦)
69 ioran 981 . . 3 (¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦) ↔ (¬ (𝐴 +o 𝐵) = ∅ ∧ ¬ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦))
7015, 68, 69sylanbrc 586 . 2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦))
71 dflim3 7542 . 2 (Lim (𝐴 +o 𝐵) ↔ (Ord (𝐴 +o 𝐵) ∧ ¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦)))
725, 70, 71sylanbrc 586 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  c0 4243   ciun 4881  Ord word 6158  Oncon0 6159  Lim wlim 6160  suc csuc 6161  (class class class)co 7135   +o coa 8082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089
This theorem is referenced by:  oaass  8170  odi  8188  wunex3  10152
  Copyright terms: Public domain W3C validator