MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalimcl Structured version   Visualization version   GIF version

Theorem oalimcl 8188
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. (Contributed by NM, 8-Dec-2004.)
Assertion
Ref Expression
oalimcl ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵))

Proof of Theorem oalimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 6256 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 oacl 8162 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
3 eloni 6203 . . . 4 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
42, 3syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
51, 4sylan2 594 . 2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴 +o 𝐵))
6 0ellim 6255 . . . . . 6 (Lim 𝐵 → ∅ ∈ 𝐵)
7 n0i 4301 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
86, 7syl 17 . . . . 5 (Lim 𝐵 → ¬ 𝐵 = ∅)
98ad2antll 727 . . . 4 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ 𝐵 = ∅)
10 oa00 8187 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
11 simpr 487 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐵 = ∅)
1210, 11syl6bi 255 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅))
1312con3d 155 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 = ∅ → ¬ (𝐴 +o 𝐵) = ∅))
141, 13sylan2 594 . . . 4 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (¬ 𝐵 = ∅ → ¬ (𝐴 +o 𝐵) = ∅))
159, 14mpd 15 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ (𝐴 +o 𝐵) = ∅)
16 vex 3499 . . . . . . . . . . 11 𝑦 ∈ V
1716sucid 6272 . . . . . . . . . 10 𝑦 ∈ suc 𝑦
18 oalim 8159 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥))
19 eqeq1 2827 . . . . . . . . . . . 12 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥) ↔ suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥)))
2018, 19syl5ib 246 . . . . . . . . . . 11 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥)))
2120imp 409 . . . . . . . . . 10 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥))
2217, 21eleqtrid 2921 . . . . . . . . 9 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → 𝑦 𝑥𝐵 (𝐴 +o 𝑥))
23 eliun 4925 . . . . . . . . 9 (𝑦 𝑥𝐵 (𝐴 +o 𝑥) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥))
2422, 23sylib 220 . . . . . . . 8 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → ∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥))
25 onelon 6218 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
261, 25sylan 582 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ On)
27 onnbtwn 6284 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
28 imnan 402 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥) ↔ ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
2927, 28sylibr 236 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥))
3029com12 32 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3130adantl 484 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3226, 31mpd 15 . . . . . . . . . . . . . 14 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → ¬ 𝐵 ∈ suc 𝑥)
3332ad2antrl 726 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ¬ 𝐵 ∈ suc 𝑥)
34 oacl 8162 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On)
35 eloni 6203 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 +o 𝑥) ∈ On → Ord (𝐴 +o 𝑥))
36 ordsucelsuc 7539 . . . . . . . . . . . . . . . . . . . . . 22 (Ord (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
38 oasuc 8151 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3938eleq2d 2900 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (suc 𝑦 ∈ (𝐴 +o suc 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
4037, 39bitr4d 284 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
4126, 40sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
42 eleq1 2902 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
4342bicomd 225 . . . . . . . . . . . . . . . . . . 19 ((𝐴 +o 𝐵) = suc 𝑦 → (suc 𝑦 ∈ (𝐴 +o suc 𝑥) ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
4441, 43sylan9bbr 513 . . . . . . . . . . . . . . . . . 18 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
451adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ On)
46 sucelon 7534 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On ↔ suc 𝑥 ∈ On)
4726, 46sylib 220 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → suc 𝑥 ∈ On)
4845, 47jca 514 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝐵 ∈ On ∧ suc 𝑥 ∈ On))
49 oaord 8175 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
50493expa 1114 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ On ∧ suc 𝑥 ∈ On) ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5148, 50sylan 582 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5251ancoms 461 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5352adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5444, 53bitr4d 284 . . . . . . . . . . . . . . . . 17 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ 𝐵 ∈ suc 𝑥))
5554biimpd 231 . . . . . . . . . . . . . . . 16 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) → 𝐵 ∈ suc 𝑥))
5655exp32 423 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) = suc 𝑦 → (𝐴 ∈ On → (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 +o 𝑥) → 𝐵 ∈ suc 𝑥))))
5756com4l 92 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 +o 𝑥) → ((𝐴 +o 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))))
5857imp32 421 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ((𝐴 +o 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))
5933, 58mtod 200 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6059exp44 440 . . . . . . . . . . 11 (𝐴 ∈ On → ((𝐵𝐶 ∧ Lim 𝐵) → (𝑥𝐵 → (𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))))
6160imp 409 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥𝐵 → (𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦)))
6261rexlimdv 3285 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6362adantl 484 . . . . . . . 8 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → (∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6424, 63mpd 15 . . . . . . 7 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6564expcom 416 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = suc 𝑦 → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6665pm2.01d 192 . . . . 5 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6766adantr 483 . . . 4 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ On) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6867nrexdv 3272 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦)
69 ioran 980 . . 3 (¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦) ↔ (¬ (𝐴 +o 𝐵) = ∅ ∧ ¬ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦))
7015, 68, 69sylanbrc 585 . 2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦))
71 dflim3 7564 . 2 (Lim (𝐴 +o 𝐵) ↔ (Ord (𝐴 +o 𝐵) ∧ ¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦)))
725, 70, 71sylanbrc 585 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wrex 3141  c0 4293   ciun 4921  Ord word 6192  Oncon0 6193  Lim wlim 6194  suc csuc 6195  (class class class)co 7158   +o coa 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108
This theorem is referenced by:  oaass  8189  odi  8207  wunex3  10165
  Copyright terms: Public domain W3C validator