MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oalimcl Structured version   Visualization version   GIF version

Theorem oalimcl 8616
Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of [TakeutiZaring] p. 60. Lemma 3.4 of [Schloeder] p. 7. (Contributed by NM, 8-Dec-2004.)
Assertion
Ref Expression
oalimcl ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵))

Proof of Theorem oalimcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 6459 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 oacl 8591 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
3 eloni 6405 . . . 4 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
42, 3syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
51, 4sylan2 592 . 2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Ord (𝐴 +o 𝐵))
6 0ellim 6458 . . . . . 6 (Lim 𝐵 → ∅ ∈ 𝐵)
7 n0i 4363 . . . . . 6 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
86, 7syl 17 . . . . 5 (Lim 𝐵 → ¬ 𝐵 = ∅)
98ad2antll 728 . . . 4 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ 𝐵 = ∅)
10 oa00 8615 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
11 simpr 484 . . . . . . 7 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐵 = ∅)
1210, 11biimtrdi 253 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) = ∅ → 𝐵 = ∅))
1312con3d 152 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 = ∅ → ¬ (𝐴 +o 𝐵) = ∅))
141, 13sylan2 592 . . . 4 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (¬ 𝐵 = ∅ → ¬ (𝐴 +o 𝐵) = ∅))
159, 14mpd 15 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ (𝐴 +o 𝐵) = ∅)
16 vex 3492 . . . . . . . . . . 11 𝑦 ∈ V
1716sucid 6477 . . . . . . . . . 10 𝑦 ∈ suc 𝑦
18 oalim 8588 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥))
19 eqeq1 2744 . . . . . . . . . . . 12 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 +o 𝐵) = 𝑥𝐵 (𝐴 +o 𝑥) ↔ suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥)))
2018, 19imbitrid 244 . . . . . . . . . . 11 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥)))
2120imp 406 . . . . . . . . . 10 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → suc 𝑦 = 𝑥𝐵 (𝐴 +o 𝑥))
2217, 21eleqtrid 2850 . . . . . . . . 9 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → 𝑦 𝑥𝐵 (𝐴 +o 𝑥))
23 eliun 5019 . . . . . . . . 9 (𝑦 𝑥𝐵 (𝐴 +o 𝑥) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥))
2422, 23sylib 218 . . . . . . . 8 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → ∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥))
25 onelon 6420 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
261, 25sylan 579 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ On)
27 onnbtwn 6489 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ On → ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
28 imnan 399 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥) ↔ ¬ (𝑥𝐵𝐵 ∈ suc 𝑥))
2927, 28sylibr 234 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑥𝐵 → ¬ 𝐵 ∈ suc 𝑥))
3029com12 32 . . . . . . . . . . . . . . . 16 (𝑥𝐵 → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3130adantl 481 . . . . . . . . . . . . . . 15 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ On → ¬ 𝐵 ∈ suc 𝑥))
3226, 31mpd 15 . . . . . . . . . . . . . 14 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → ¬ 𝐵 ∈ suc 𝑥)
3332ad2antrl 727 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ¬ 𝐵 ∈ suc 𝑥)
34 oacl 8591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o 𝑥) ∈ On)
35 eloni 6405 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 +o 𝑥) ∈ On → Ord (𝐴 +o 𝑥))
36 ordsucelsuc 7858 . . . . . . . . . . . . . . . . . . . . . 22 (Ord (𝐴 +o 𝑥) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
38 oasuc 8580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3938eleq2d 2830 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (suc 𝑦 ∈ (𝐴 +o suc 𝑥) ↔ suc 𝑦 ∈ suc (𝐴 +o 𝑥)))
4037, 39bitr4d 282 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
4126, 40sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
42 eleq1 2832 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 +o 𝐵) = suc 𝑦 → ((𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥) ↔ suc 𝑦 ∈ (𝐴 +o suc 𝑥)))
4342bicomd 223 . . . . . . . . . . . . . . . . . . 19 ((𝐴 +o 𝐵) = suc 𝑦 → (suc 𝑦 ∈ (𝐴 +o suc 𝑥) ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
4441, 43sylan9bbr 510 . . . . . . . . . . . . . . . . . 18 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
451adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → 𝐵 ∈ On)
46 onsucb 7853 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On ↔ suc 𝑥 ∈ On)
4726, 46sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → suc 𝑥 ∈ On)
4845, 47jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝐵 ∈ On ∧ suc 𝑥 ∈ On))
49 oaord 8603 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ suc 𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
50493expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ On ∧ suc 𝑥 ∈ On) ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5148, 50sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝐴 ∈ On) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5251ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵)) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5352adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝐵 ∈ suc 𝑥 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o suc 𝑥)))
5444, 53bitr4d 282 . . . . . . . . . . . . . . . . 17 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) ↔ 𝐵 ∈ suc 𝑥))
5554biimpd 229 . . . . . . . . . . . . . . . 16 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ ((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵))) → (𝑦 ∈ (𝐴 +o 𝑥) → 𝐵 ∈ suc 𝑥))
5655exp32 420 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) = suc 𝑦 → (𝐴 ∈ On → (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 +o 𝑥) → 𝐵 ∈ suc 𝑥))))
5756com4l 92 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) → (𝑦 ∈ (𝐴 +o 𝑥) → ((𝐴 +o 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))))
5857imp32 418 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ((𝐴 +o 𝐵) = suc 𝑦𝐵 ∈ suc 𝑥))
5933, 58mtod 198 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (((𝐵𝐶 ∧ Lim 𝐵) ∧ 𝑥𝐵) ∧ 𝑦 ∈ (𝐴 +o 𝑥))) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6059exp44 437 . . . . . . . . . . 11 (𝐴 ∈ On → ((𝐵𝐶 ∧ Lim 𝐵) → (𝑥𝐵 → (𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))))
6160imp 406 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝑥𝐵 → (𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦)))
6261rexlimdv 3159 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6362adantl 481 . . . . . . . 8 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → (∃𝑥𝐵 𝑦 ∈ (𝐴 +o 𝑥) → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6424, 63mpd 15 . . . . . . 7 (((𝐴 +o 𝐵) = suc 𝑦 ∧ (𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵))) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6564expcom 413 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐴 +o 𝐵) = suc 𝑦 → ¬ (𝐴 +o 𝐵) = suc 𝑦))
6665pm2.01d 190 . . . . 5 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6766adantr 480 . . . 4 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ 𝑦 ∈ On) → ¬ (𝐴 +o 𝐵) = suc 𝑦)
6867nrexdv 3155 . . 3 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦)
69 ioran 984 . . 3 (¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦) ↔ (¬ (𝐴 +o 𝐵) = ∅ ∧ ¬ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦))
7015, 68, 69sylanbrc 582 . 2 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦))
71 dflim3 7884 . 2 (Lim (𝐴 +o 𝐵) ↔ (Ord (𝐴 +o 𝐵) ∧ ¬ ((𝐴 +o 𝐵) = ∅ ∨ ∃𝑦 ∈ On (𝐴 +o 𝐵) = suc 𝑦)))
725, 70, 71sylanbrc 582 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076  c0 4352   ciun 5015  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526
This theorem is referenced by:  oaass  8617  odi  8635  wunex3  10810  omlimcl2  43203  oalim2cl  43251
  Copyright terms: Public domain W3C validator