| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4494 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4497 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2735 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: ifboth 4528 resixpfo 8909 boxriin 8913 boxcutc 8914 suppr 9423 infpr 9456 cantnflem1 9642 ttukeylem5 10466 ttukeylem6 10467 bitsinv1lem 16411 bitsinv1 16412 smumullem 16462 hashgcdeq 16760 ramcl2lem 16980 acsfn 17620 tsrlemax 18545 odlem1 19465 gexlem1 19509 cyggex2 19827 dprdfeq0 19954 xrsdsreclb 21330 mplmon2 21968 evlslem1 21989 coe1tmmul2 22162 coe1tmmul 22163 ptcld 23500 xkopt 23542 stdbdxmet 24403 xrsxmet 24698 iccpnfcnv 24842 iccpnfhmeo 24843 xrhmeo 24844 dvcobr 25849 dvcobrOLD 25850 mdegle0 25982 dvradcnv 26330 psercnlem1 26335 psercn 26336 logtayl 26569 efrlim 26879 efrlimOLD 26880 lgamgulmlem5 26943 musum 27101 dchrmullid 27163 dchrsum2 27179 sumdchr2 27181 dchrisum0flblem1 27419 dchrisum0flblem2 27420 rplogsum 27438 pntlemj 27514 eupth2lem1 30147 eulerpathpr 30169 ifeqeqx 32471 sgn3da 32759 elrgspnlem2 33194 elrgspnlem3 33195 xrge0iifcnv 33923 xrge0iifhom 33927 esumpinfval 34063 dstfrvunirn 34466 plymulx0 34538 signswn0 34551 signswch 34552 lpadmax 34673 lpadright 34675 fnejoin2 36357 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem24 37638 cnambfre 37662 itg2addnclem 37665 itg2addnclem3 37667 itg2addnc 37668 itg2gt0cn 37669 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 sticksstones10 42143 sticksstones12a 42145 aks6d1c6lem3 42160 kelac1 43052 discsubc 49053 iinfconstbas 49055 discthing 49450 |
| Copyright terms: Public domain | W3C validator |