| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4482 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4485 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2739 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 |
| This theorem is referenced by: ifboth 4516 resixpfo 8869 boxriin 8873 boxcutc 8874 suppr 9366 infpr 9399 cantnflem1 9589 ttukeylem5 10414 ttukeylem6 10415 bitsinv1lem 16362 bitsinv1 16363 smumullem 16413 hashgcdeq 16711 ramcl2lem 16931 acsfn 17575 tsrlemax 18502 odlem1 19457 gexlem1 19501 cyggex2 19819 dprdfeq0 19946 xrsdsreclb 21360 mplmon2 22006 evlslem1 22027 coe1tmmul2 22200 coe1tmmul 22201 ptcld 23538 xkopt 23580 stdbdxmet 24440 xrsxmet 24735 iccpnfcnv 24879 iccpnfhmeo 24880 xrhmeo 24881 dvcobr 25886 dvcobrOLD 25887 mdegle0 26019 dvradcnv 26367 psercnlem1 26372 psercn 26373 logtayl 26606 efrlim 26916 efrlimOLD 26917 lgamgulmlem5 26980 musum 27138 dchrmullid 27200 dchrsum2 27216 sumdchr2 27218 dchrisum0flblem1 27456 dchrisum0flblem2 27457 rplogsum 27475 pntlemj 27551 eupth2lem1 30209 eulerpathpr 30231 ifeqeqx 32533 sgn3da 32828 elrgspnlem2 33221 elrgspnlem3 33222 esplyfv 33602 xrge0iifcnv 33957 xrge0iifhom 33961 esumpinfval 34097 dstfrvunirn 34499 plymulx0 34571 signswn0 34584 signswch 34585 lpadmax 34706 lpadright 34708 fnejoin2 36424 poimirlem16 37686 poimirlem17 37687 poimirlem19 37689 poimirlem20 37690 poimirlem24 37694 cnambfre 37718 itg2addnclem 37721 itg2addnclem3 37723 itg2addnc 37724 itg2gt0cn 37725 ftc1anclem7 37749 ftc1anclem8 37750 ftc1anc 37751 sticksstones10 42258 sticksstones12a 42260 aks6d1c6lem3 42275 kelac1 43170 discsubc 49179 iinfconstbas 49181 discthing 49576 |
| Copyright terms: Public domain | W3C validator |