Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
ifbothda | ⊢ (𝜂 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
2 | iftrue 4462 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
9 | iffalse 4465 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
10 | 9 | eqcomd 2744 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
14 | 8, 13 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
15 | 7, 14 | pm2.61dan 809 | 1 ⊢ (𝜂 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: ifboth 4495 resixpfo 8682 boxriin 8686 boxcutc 8687 suppr 9160 infpr 9192 cantnflem1 9377 ttukeylem5 10200 ttukeylem6 10201 bitsinv1lem 16076 bitsinv1 16077 smumullem 16127 hashgcdeq 16418 ramcl2lem 16638 acsfn 17285 tsrlemax 18219 odlem1 19058 gexlem1 19099 cyggex2 19413 dprdfeq0 19540 xrsdsreclb 20557 mplmon2 21179 evlslem1 21202 coe1tmmul2 21357 coe1tmmul 21358 ptcld 22672 xkopt 22714 stdbdxmet 23577 xrsxmet 23878 iccpnfcnv 24013 iccpnfhmeo 24014 xrhmeo 24015 dvcobr 25015 mdegle0 25147 dvradcnv 25485 psercnlem1 25489 psercn 25490 logtayl 25720 efrlim 26024 lgamgulmlem5 26087 musum 26245 dchrmulid2 26305 dchrsum2 26321 sumdchr2 26323 dchrisum0flblem1 26561 dchrisum0flblem2 26562 rplogsum 26580 pntlemj 26656 eupth2lem1 28483 eulerpathpr 28505 ifeqeqx 30786 xrge0iifcnv 31785 xrge0iifhom 31789 esumpinfval 31941 dstfrvunirn 32341 sgn3da 32408 plymulx0 32426 signswn0 32439 signswch 32440 lpadmax 32562 lpadright 32564 fnejoin2 34485 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem24 35728 cnambfre 35752 itg2addnclem 35755 itg2addnclem3 35757 itg2addnc 35758 itg2gt0cn 35759 ftc1anclem7 35783 ftc1anclem8 35784 ftc1anc 35785 sticksstones10 40039 sticksstones12a 40041 metakunt1 40053 metakunt2 40054 metakunt25 40077 kelac1 40804 |
Copyright terms: Public domain | W3C validator |