| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4479 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4482 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2736 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ifcif 4473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4474 |
| This theorem is referenced by: ifboth 4513 resixpfo 8855 boxriin 8859 boxcutc 8860 suppr 9351 infpr 9384 cantnflem1 9574 ttukeylem5 10396 ttukeylem6 10397 bitsinv1lem 16344 bitsinv1 16345 smumullem 16395 hashgcdeq 16693 ramcl2lem 16913 acsfn 17557 tsrlemax 18484 odlem1 19440 gexlem1 19484 cyggex2 19802 dprdfeq0 19929 xrsdsreclb 21343 mplmon2 21989 evlslem1 22010 coe1tmmul2 22183 coe1tmmul 22184 ptcld 23521 xkopt 23563 stdbdxmet 24423 xrsxmet 24718 iccpnfcnv 24862 iccpnfhmeo 24863 xrhmeo 24864 dvcobr 25869 dvcobrOLD 25870 mdegle0 26002 dvradcnv 26350 psercnlem1 26355 psercn 26356 logtayl 26589 efrlim 26899 efrlimOLD 26900 lgamgulmlem5 26963 musum 27121 dchrmullid 27183 dchrsum2 27199 sumdchr2 27201 dchrisum0flblem1 27439 dchrisum0flblem2 27440 rplogsum 27458 pntlemj 27534 eupth2lem1 30188 eulerpathpr 30210 ifeqeqx 32512 sgn3da 32807 elrgspnlem2 33200 elrgspnlem3 33201 esplyfv 33581 xrge0iifcnv 33936 xrge0iifhom 33940 esumpinfval 34076 dstfrvunirn 34478 plymulx0 34550 signswn0 34563 signswch 34564 lpadmax 34685 lpadright 34687 fnejoin2 36382 poimirlem16 37655 poimirlem17 37656 poimirlem19 37658 poimirlem20 37659 poimirlem24 37663 cnambfre 37687 itg2addnclem 37690 itg2addnclem3 37692 itg2addnc 37693 itg2gt0cn 37694 ftc1anclem7 37718 ftc1anclem8 37719 ftc1anc 37720 sticksstones10 42167 sticksstones12a 42169 aks6d1c6lem3 42184 kelac1 43075 discsubc 49075 iinfconstbas 49077 discthing 49472 |
| Copyright terms: Public domain | W3C validator |