| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4484 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4487 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2735 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: ifboth 4518 resixpfo 8870 boxriin 8874 boxcutc 8875 suppr 9381 infpr 9414 cantnflem1 9604 ttukeylem5 10426 ttukeylem6 10427 bitsinv1lem 16370 bitsinv1 16371 smumullem 16421 hashgcdeq 16719 ramcl2lem 16939 acsfn 17583 tsrlemax 18510 odlem1 19432 gexlem1 19476 cyggex2 19794 dprdfeq0 19921 xrsdsreclb 21338 mplmon2 21984 evlslem1 22005 coe1tmmul2 22178 coe1tmmul 22179 ptcld 23516 xkopt 23558 stdbdxmet 24419 xrsxmet 24714 iccpnfcnv 24858 iccpnfhmeo 24859 xrhmeo 24860 dvcobr 25865 dvcobrOLD 25866 mdegle0 25998 dvradcnv 26346 psercnlem1 26351 psercn 26352 logtayl 26585 efrlim 26895 efrlimOLD 26896 lgamgulmlem5 26959 musum 27117 dchrmullid 27179 dchrsum2 27195 sumdchr2 27197 dchrisum0flblem1 27435 dchrisum0flblem2 27436 rplogsum 27454 pntlemj 27530 eupth2lem1 30180 eulerpathpr 30202 ifeqeqx 32504 sgn3da 32792 elrgspnlem2 33193 elrgspnlem3 33194 xrge0iifcnv 33899 xrge0iifhom 33903 esumpinfval 34039 dstfrvunirn 34442 plymulx0 34514 signswn0 34527 signswch 34528 lpadmax 34649 lpadright 34651 fnejoin2 36342 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem24 37623 cnambfre 37647 itg2addnclem 37650 itg2addnclem3 37652 itg2addnc 37653 itg2gt0cn 37654 ftc1anclem7 37678 ftc1anclem8 37679 ftc1anc 37680 sticksstones10 42128 sticksstones12a 42130 aks6d1c6lem3 42145 kelac1 43036 discsubc 49037 iinfconstbas 49039 discthing 49434 |
| Copyright terms: Public domain | W3C validator |