| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4511 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4514 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2742 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-if 4506 |
| This theorem is referenced by: ifboth 4545 resixpfo 8955 boxriin 8959 boxcutc 8960 suppr 9489 infpr 9522 cantnflem1 9708 ttukeylem5 10532 ttukeylem6 10533 bitsinv1lem 16465 bitsinv1 16466 smumullem 16516 hashgcdeq 16814 ramcl2lem 17034 acsfn 17676 tsrlemax 18601 odlem1 19521 gexlem1 19565 cyggex2 19883 dprdfeq0 20010 xrsdsreclb 21386 mplmon2 22024 evlslem1 22045 coe1tmmul2 22218 coe1tmmul 22219 ptcld 23556 xkopt 23598 stdbdxmet 24459 xrsxmet 24754 iccpnfcnv 24898 iccpnfhmeo 24899 xrhmeo 24900 dvcobr 25906 dvcobrOLD 25907 mdegle0 26039 dvradcnv 26387 psercnlem1 26392 psercn 26393 logtayl 26626 efrlim 26936 efrlimOLD 26937 lgamgulmlem5 27000 musum 27158 dchrmullid 27220 dchrsum2 27236 sumdchr2 27238 dchrisum0flblem1 27476 dchrisum0flblem2 27477 rplogsum 27495 pntlemj 27571 eupth2lem1 30204 eulerpathpr 30226 ifeqeqx 32528 sgn3da 32818 elrgspnlem2 33243 elrgspnlem3 33244 xrge0iifcnv 33969 xrge0iifhom 33973 esumpinfval 34109 dstfrvunirn 34512 plymulx0 34584 signswn0 34597 signswch 34598 lpadmax 34719 lpadright 34721 fnejoin2 36392 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem20 37669 poimirlem24 37673 cnambfre 37697 itg2addnclem 37700 itg2addnclem3 37702 itg2addnc 37703 itg2gt0cn 37704 ftc1anclem7 37728 ftc1anclem8 37729 ftc1anc 37730 sticksstones10 42173 sticksstones12a 42175 aks6d1c6lem3 42190 kelac1 43054 discsubc 48998 iinfconstbas 49000 discthing 49314 |
| Copyright terms: Public domain | W3C validator |