| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4506 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2741 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4509 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2741 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: ifboth 4540 resixpfo 8948 boxriin 8952 boxcutc 8953 suppr 9482 infpr 9515 cantnflem1 9701 ttukeylem5 10525 ttukeylem6 10526 bitsinv1lem 16458 bitsinv1 16459 smumullem 16509 hashgcdeq 16807 ramcl2lem 17027 acsfn 17669 tsrlemax 18594 odlem1 19514 gexlem1 19558 cyggex2 19876 dprdfeq0 20003 xrsdsreclb 21379 mplmon2 22017 evlslem1 22038 coe1tmmul2 22211 coe1tmmul 22212 ptcld 23549 xkopt 23591 stdbdxmet 24452 xrsxmet 24747 iccpnfcnv 24891 iccpnfhmeo 24892 xrhmeo 24893 dvcobr 25899 dvcobrOLD 25900 mdegle0 26032 dvradcnv 26380 psercnlem1 26385 psercn 26386 logtayl 26619 efrlim 26929 efrlimOLD 26930 lgamgulmlem5 26993 musum 27151 dchrmullid 27213 dchrsum2 27229 sumdchr2 27231 dchrisum0flblem1 27469 dchrisum0flblem2 27470 rplogsum 27488 pntlemj 27564 eupth2lem1 30145 eulerpathpr 30167 ifeqeqx 32469 sgn3da 32759 elrgspnlem2 33184 elrgspnlem3 33185 xrge0iifcnv 33910 xrge0iifhom 33914 esumpinfval 34050 dstfrvunirn 34453 plymulx0 34525 signswn0 34538 signswch 34539 lpadmax 34660 lpadright 34662 fnejoin2 36333 poimirlem16 37606 poimirlem17 37607 poimirlem19 37609 poimirlem20 37610 poimirlem24 37614 cnambfre 37638 itg2addnclem 37641 itg2addnclem3 37643 itg2addnc 37644 itg2gt0cn 37645 ftc1anclem7 37669 ftc1anclem8 37670 ftc1anc 37671 sticksstones10 42114 sticksstones12a 42116 aks6d1c6lem3 42131 metakunt1 42164 metakunt2 42165 metakunt25 42188 kelac1 43034 discsubc 48979 iinfconstbas 48981 discthing 49295 |
| Copyright terms: Public domain | W3C validator |