![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
ifbothda | ⊢ (𝜂 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
2 | iftrue 4535 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
9 | iffalse 4538 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
10 | 9 | eqcomd 2739 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
13 | 12 | adantl 483 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
14 | 8, 13 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: ifboth 4568 resixpfo 8930 boxriin 8934 boxcutc 8935 suppr 9466 infpr 9498 cantnflem1 9684 ttukeylem5 10508 ttukeylem6 10509 bitsinv1lem 16382 bitsinv1 16383 smumullem 16433 hashgcdeq 16722 ramcl2lem 16942 acsfn 17603 tsrlemax 18539 odlem1 19403 gexlem1 19447 cyggex2 19765 dprdfeq0 19892 xrsdsreclb 20992 mplmon2 21622 evlslem1 21645 coe1tmmul2 21798 coe1tmmul 21799 ptcld 23117 xkopt 23159 stdbdxmet 24024 xrsxmet 24325 iccpnfcnv 24460 iccpnfhmeo 24461 xrhmeo 24462 dvcobr 25463 mdegle0 25595 dvradcnv 25933 psercnlem1 25937 psercn 25938 logtayl 26168 efrlim 26474 lgamgulmlem5 26537 musum 26695 dchrmullid 26755 dchrsum2 26771 sumdchr2 26773 dchrisum0flblem1 27011 dchrisum0flblem2 27012 rplogsum 27030 pntlemj 27106 eupth2lem1 29471 eulerpathpr 29493 ifeqeqx 31774 xrge0iifcnv 32913 xrge0iifhom 32917 esumpinfval 33071 dstfrvunirn 33473 sgn3da 33540 plymulx0 33558 signswn0 33571 signswch 33572 lpadmax 33694 lpadright 33696 gg-dvcobr 35176 fnejoin2 35254 poimirlem16 36504 poimirlem17 36505 poimirlem19 36507 poimirlem20 36508 poimirlem24 36512 cnambfre 36536 itg2addnclem 36539 itg2addnclem3 36541 itg2addnc 36542 itg2gt0cn 36543 ftc1anclem7 36567 ftc1anclem8 36568 ftc1anc 36569 sticksstones10 40971 sticksstones12a 40973 metakunt1 40985 metakunt2 40986 metakunt25 41009 kelac1 41805 |
Copyright terms: Public domain | W3C validator |