![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
ifbothda | ⊢ (𝜂 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
2 | iftrue 4538 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2734 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
6 | 5 | adantl 480 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
9 | iffalse 4541 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
10 | 9 | eqcomd 2734 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
13 | 12 | adantl 480 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
14 | 8, 13 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
15 | 7, 14 | pm2.61dan 811 | 1 ⊢ (𝜂 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ifcif 4532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-if 4533 |
This theorem is referenced by: ifboth 4571 resixpfo 8963 boxriin 8967 boxcutc 8968 suppr 9504 infpr 9536 cantnflem1 9722 ttukeylem5 10546 ttukeylem6 10547 bitsinv1lem 16425 bitsinv1 16426 smumullem 16476 hashgcdeq 16767 ramcl2lem 16987 acsfn 17648 tsrlemax 18587 odlem1 19504 gexlem1 19548 cyggex2 19866 dprdfeq0 19993 xrsdsreclb 21360 mplmon2 22022 evlslem1 22045 coe1tmmul2 22214 coe1tmmul 22215 ptcld 23545 xkopt 23587 stdbdxmet 24452 xrsxmet 24753 iccpnfcnv 24897 iccpnfhmeo 24898 xrhmeo 24899 dvcobr 25905 dvcobrOLD 25906 mdegle0 26041 dvradcnv 26385 psercnlem1 26390 psercn 26391 logtayl 26622 efrlim 26929 efrlimOLD 26930 lgamgulmlem5 26993 musum 27151 dchrmullid 27213 dchrsum2 27229 sumdchr2 27231 dchrisum0flblem1 27469 dchrisum0flblem2 27470 rplogsum 27488 pntlemj 27564 eupth2lem1 30056 eulerpathpr 30078 ifeqeqx 32362 xrge0iifcnv 33575 xrge0iifhom 33579 esumpinfval 33733 dstfrvunirn 34135 sgn3da 34202 plymulx0 34220 signswn0 34233 signswch 34234 lpadmax 34355 lpadright 34357 fnejoin2 35894 poimirlem16 37150 poimirlem17 37151 poimirlem19 37153 poimirlem20 37154 poimirlem24 37158 cnambfre 37182 itg2addnclem 37185 itg2addnclem3 37187 itg2addnc 37188 itg2gt0cn 37189 ftc1anclem7 37213 ftc1anclem8 37214 ftc1anc 37215 sticksstones10 41667 sticksstones12a 41669 aks6d1c6lem3 41684 metakunt1 41697 metakunt2 41698 metakunt25 41721 kelac1 42536 |
Copyright terms: Public domain | W3C validator |