| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version | ||
| Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
| ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
| ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
| ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| ifbothda | ⊢ (𝜂 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
| 2 | iftrue 4497 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
| 8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
| 9 | iffalse 4500 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 10 | 9 | eqcomd 2736 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
| 11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
| 14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
| 15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: ifboth 4531 resixpfo 8912 boxriin 8916 boxcutc 8917 suppr 9430 infpr 9463 cantnflem1 9649 ttukeylem5 10473 ttukeylem6 10474 bitsinv1lem 16418 bitsinv1 16419 smumullem 16469 hashgcdeq 16767 ramcl2lem 16987 acsfn 17627 tsrlemax 18552 odlem1 19472 gexlem1 19516 cyggex2 19834 dprdfeq0 19961 xrsdsreclb 21337 mplmon2 21975 evlslem1 21996 coe1tmmul2 22169 coe1tmmul 22170 ptcld 23507 xkopt 23549 stdbdxmet 24410 xrsxmet 24705 iccpnfcnv 24849 iccpnfhmeo 24850 xrhmeo 24851 dvcobr 25856 dvcobrOLD 25857 mdegle0 25989 dvradcnv 26337 psercnlem1 26342 psercn 26343 logtayl 26576 efrlim 26886 efrlimOLD 26887 lgamgulmlem5 26950 musum 27108 dchrmullid 27170 dchrsum2 27186 sumdchr2 27188 dchrisum0flblem1 27426 dchrisum0flblem2 27427 rplogsum 27445 pntlemj 27521 eupth2lem1 30154 eulerpathpr 30176 ifeqeqx 32478 sgn3da 32766 elrgspnlem2 33201 elrgspnlem3 33202 xrge0iifcnv 33930 xrge0iifhom 33934 esumpinfval 34070 dstfrvunirn 34473 plymulx0 34545 signswn0 34558 signswch 34559 lpadmax 34680 lpadright 34682 fnejoin2 36364 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem24 37645 cnambfre 37669 itg2addnclem 37672 itg2addnclem3 37674 itg2addnc 37675 itg2gt0cn 37676 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 sticksstones10 42150 sticksstones12a 42152 aks6d1c6lem3 42167 kelac1 43059 discsubc 49057 iinfconstbas 49059 discthing 49454 |
| Copyright terms: Public domain | W3C validator |