![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
ifbothda | ⊢ (𝜂 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
2 | iftrue 4554 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2746 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
9 | iffalse 4557 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
10 | 9 | eqcomd 2746 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
14 | 8, 13 | mpbid 232 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
15 | 7, 14 | pm2.61dan 812 | 1 ⊢ (𝜂 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: ifboth 4587 resixpfo 8994 boxriin 8998 boxcutc 8999 suppr 9540 infpr 9572 cantnflem1 9758 ttukeylem5 10582 ttukeylem6 10583 bitsinv1lem 16487 bitsinv1 16488 smumullem 16538 hashgcdeq 16836 ramcl2lem 17056 acsfn 17717 tsrlemax 18656 odlem1 19577 gexlem1 19621 cyggex2 19939 dprdfeq0 20066 xrsdsreclb 21454 mplmon2 22108 evlslem1 22129 coe1tmmul2 22300 coe1tmmul 22301 ptcld 23642 xkopt 23684 stdbdxmet 24549 xrsxmet 24850 iccpnfcnv 24994 iccpnfhmeo 24995 xrhmeo 24996 dvcobr 26003 dvcobrOLD 26004 mdegle0 26136 dvradcnv 26482 psercnlem1 26487 psercn 26488 logtayl 26720 efrlim 27030 efrlimOLD 27031 lgamgulmlem5 27094 musum 27252 dchrmullid 27314 dchrsum2 27330 sumdchr2 27332 dchrisum0flblem1 27570 dchrisum0flblem2 27571 rplogsum 27589 pntlemj 27665 eupth2lem1 30250 eulerpathpr 30272 ifeqeqx 32565 xrge0iifcnv 33879 xrge0iifhom 33883 esumpinfval 34037 dstfrvunirn 34439 sgn3da 34506 plymulx0 34524 signswn0 34537 signswch 34538 lpadmax 34659 lpadright 34661 fnejoin2 36335 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem24 37604 cnambfre 37628 itg2addnclem 37631 itg2addnclem3 37633 itg2addnc 37634 itg2gt0cn 37635 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 sticksstones10 42112 sticksstones12a 42114 aks6d1c6lem3 42129 metakunt1 42162 metakunt2 42163 metakunt25 42186 kelac1 43020 |
Copyright terms: Public domain | W3C validator |