![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifbothda | Structured version Visualization version GIF version |
Description: A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) |
ifboth.2 | ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) |
ifbothda.3 | ⊢ ((𝜂 ∧ 𝜑) → 𝜓) |
ifbothda.4 | ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
ifbothda | ⊢ (𝜂 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbothda.3 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → 𝜓) | |
2 | iftrue 4533 | . . . . . 6 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2736 | . . . . 5 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | ifboth.1 | . . . . 5 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜃)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
6 | 5 | adantl 480 | . . 3 ⊢ ((𝜂 ∧ 𝜑) → (𝜓 ↔ 𝜃)) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ 𝜑) → 𝜃) |
8 | ifbothda.4 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜒) | |
9 | iffalse 4536 | . . . . . 6 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
10 | 9 | eqcomd 2736 | . . . . 5 ⊢ (¬ 𝜑 → 𝐵 = if(𝜑, 𝐴, 𝐵)) |
11 | ifboth.2 | . . . . 5 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒 ↔ 𝜃)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (¬ 𝜑 → (𝜒 ↔ 𝜃)) |
13 | 12 | adantl 480 | . . 3 ⊢ ((𝜂 ∧ ¬ 𝜑) → (𝜒 ↔ 𝜃)) |
14 | 8, 13 | mpbid 231 | . 2 ⊢ ((𝜂 ∧ ¬ 𝜑) → 𝜃) |
15 | 7, 14 | pm2.61dan 809 | 1 ⊢ (𝜂 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-if 4528 |
This theorem is referenced by: ifboth 4566 resixpfo 8932 boxriin 8936 boxcutc 8937 suppr 9468 infpr 9500 cantnflem1 9686 ttukeylem5 10510 ttukeylem6 10511 bitsinv1lem 16386 bitsinv1 16387 smumullem 16437 hashgcdeq 16726 ramcl2lem 16946 acsfn 17607 tsrlemax 18543 odlem1 19444 gexlem1 19488 cyggex2 19806 dprdfeq0 19933 xrsdsreclb 21192 mplmon2 21841 evlslem1 21864 coe1tmmul2 22018 coe1tmmul 22019 ptcld 23337 xkopt 23379 stdbdxmet 24244 xrsxmet 24545 iccpnfcnv 24689 iccpnfhmeo 24690 xrhmeo 24691 dvcobr 25697 dvcobrOLD 25698 mdegle0 25830 dvradcnv 26169 psercnlem1 26173 psercn 26174 logtayl 26404 efrlim 26710 lgamgulmlem5 26773 musum 26931 dchrmullid 26991 dchrsum2 27007 sumdchr2 27009 dchrisum0flblem1 27247 dchrisum0flblem2 27248 rplogsum 27266 pntlemj 27342 eupth2lem1 29738 eulerpathpr 29760 ifeqeqx 32041 xrge0iifcnv 33211 xrge0iifhom 33215 esumpinfval 33369 dstfrvunirn 33771 sgn3da 33838 plymulx0 33856 signswn0 33869 signswch 33870 lpadmax 33992 lpadright 33994 fnejoin2 35557 poimirlem16 36807 poimirlem17 36808 poimirlem19 36810 poimirlem20 36811 poimirlem24 36815 cnambfre 36839 itg2addnclem 36842 itg2addnclem3 36844 itg2addnc 36845 itg2gt0cn 36846 ftc1anclem7 36870 ftc1anclem8 36871 ftc1anc 36872 sticksstones10 41277 sticksstones12a 41279 metakunt1 41291 metakunt2 41292 metakunt25 41315 kelac1 42107 |
Copyright terms: Public domain | W3C validator |