| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4531 |
. . . . . . . . 9
⊢ (𝑡 ∈ ℝ → if(𝑡 ∈ ℝ,
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))), 0) =
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 2 | 1 | mpteq2ia 5245 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ,
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))), 0)) = (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 3 | 2 | fveq2i 6909 |
. . . . . . 7
⊢
(∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ ℝ,
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))), 0))) =
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 4 | | ftc1anc.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 5 | 4 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
| 6 | | 0cnd 11254 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
| 7 | 5, 6 | ifclda 4561 |
. . . . . . . . . . . 12
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) ∈ ℂ) |
| 8 | 7 | recld 15233 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 9 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 10 | | ftc1anc.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 11 | | rembl 25575 |
. . . . . . . . . . . 12
⊢ ℝ
∈ dom vol |
| 12 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈ dom
vol) |
| 13 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 14 | | eldifn 4132 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) |
| 16 | | iffalse 4534 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = 0) |
| 17 | 16 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (¬
𝑡 ∈ 𝐷 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘0)) |
| 18 | | re0 15191 |
. . . . . . . . . . . . 13
⊢
(ℜ‘0) = 0 |
| 19 | 17, 18 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (¬
𝑡 ∈ 𝐷 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = 0) |
| 20 | 15, 19 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = 0) |
| 21 | | iftrue 4531 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) = (𝐹‘𝑡)) |
| 22 | 21 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝐷 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) = (ℜ‘(𝐹‘𝑡))) |
| 23 | 22 | mpteq2ia 5245 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ 𝐷 ↦ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) |
| 24 | 4 | feqmptd 6977 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
| 25 | | ftc1anc.i |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
| 26 | 24, 25 | eqeltrrd 2842 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈
𝐿1) |
| 27 | 5 | iblcn 25834 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ 𝐿1 ↔
((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ 𝐿1 ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈
𝐿1))) |
| 28 | 26, 27 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ 𝐿1 ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈
𝐿1)) |
| 29 | 28 | simpld 494 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈
𝐿1) |
| 30 | 23, 29 | eqeltrid 2845 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈
𝐿1) |
| 31 | 10, 12, 13, 20, 30 | iblss2 25841 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈
𝐿1) |
| 32 | 8 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℂ) |
| 34 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) = (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) |
| 35 | | absf 15376 |
. . . . . . . . . . . . . 14
⊢
abs:ℂ⟶ℝ |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
| 37 | 36 | feqmptd 6977 |
. . . . . . . . . . . 12
⊢ (𝜑 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) |
| 38 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) → (abs‘𝑥) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 39 | 33, 34, 37, 38 | fmptco 7149 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) = (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 40 | 9 | fmpttd 7135 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡),
0))):ℝ⟶ℝ) |
| 41 | | iblmbf 25802 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
| 42 | 25, 41 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 43 | 24, 42 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn) |
| 44 | 5 | ismbfcn2 25673 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn ↔ ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn))) |
| 45 | 43, 44 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn)) |
| 46 | 45 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn) |
| 47 | 23, 46 | eqeltrid 2845 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ MblFn) |
| 48 | 10, 12, 13, 20, 47 | mbfss 25681 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn) |
| 49 | | ftc1anclem1 37700 |
. . . . . . . . . . . 12
⊢ (((𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∈ MblFn) → (abs ∘
(𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) ∈ MblFn) |
| 50 | 40, 48, 49 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) ∈ MblFn) |
| 51 | 39, 50 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∈ MblFn) |
| 52 | 9, 31, 51 | iblabsnc 37691 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∈
𝐿1) |
| 53 | 32 | abscld 15475 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ ℝ) |
| 54 | 53 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ ℝ) |
| 55 | 32 | absge0d 15483 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 56 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 57 | 54, 56 | iblpos 25828 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∈ 𝐿1 ↔
((𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))), 0))) ∈
ℝ))) |
| 58 | 52, 57 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∈ MblFn ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))), 0))) ∈
ℝ)) |
| 59 | 58 | simprd 495 |
. . . . . . 7
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ ℝ, (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))), 0))) ∈
ℝ) |
| 60 | 3, 59 | eqeltrrid 2846 |
. . . . . 6
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ∈ ℝ) |
| 61 | | ltsubrp 13071 |
. . . . . 6
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ∈ ℝ ∧ 𝑌 ∈ ℝ+)
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))))) |
| 62 | 60, 61 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))))) |
| 63 | | rpre 13043 |
. . . . . . 7
⊢ (𝑌 ∈ ℝ+
→ 𝑌 ∈
ℝ) |
| 64 | | resubcl 11573 |
. . . . . . 7
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ∈ ℝ ∧ 𝑌 ∈ ℝ) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ∈ ℝ) |
| 65 | 60, 63, 64 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ∈ ℝ) |
| 66 | 60 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ∈ ℝ) |
| 67 | 65, 66 | ltnled 11408 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ↔ ¬
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ≤
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) |
| 68 | 62, 67 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → ¬
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ≤
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) |
| 69 | 53 | rexrd 11311 |
. . . . . . . . 9
⊢ (𝜑 →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈
ℝ*) |
| 70 | | elxrge0 13497 |
. . . . . . . . 9
⊢
((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ (0[,]+∞) ↔
((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ ℝ* ∧ 0
≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 71 | 69, 55, 70 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈
(0[,]+∞)) |
| 72 | 71 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈
(0[,]+∞)) |
| 73 | 72 | fmpttd 7135 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡),
0)))):ℝ⟶(0[,]+∞)) |
| 74 | 73 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡),
0)))):ℝ⟶(0[,]+∞)) |
| 75 | 65 | rexrd 11311 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ∈
ℝ*) |
| 76 | | itg2leub 25769 |
. . . . 5
⊢ (((𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))):ℝ⟶(0[,]+∞) ∧
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ∈ ℝ*) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ≤
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) →
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)))) |
| 77 | 74, 75, 76 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ≤
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) →
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)))) |
| 78 | 68, 77 | mtbid 324 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) → ¬
∀𝑔 ∈ dom
∫1(𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) →
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) |
| 79 | | rexanali 3102 |
. . 3
⊢
(∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) ↔ ¬ ∀𝑔 ∈ dom ∫1(𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) →
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) |
| 80 | 78, 79 | sylibr 234 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) |
| 81 | 65 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ ¬ (∫1‘𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ∈ ℝ) |
| 82 | | itg1cl 25720 |
. . . . . . . . 9
⊢ (𝑔 ∈ dom ∫1
→ (∫1‘𝑔) ∈ ℝ) |
| 83 | 82 | ad2antlr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ ¬ (∫1‘𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → (∫1‘𝑔) ∈
ℝ) |
| 84 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 85 | 84 | i1fpos 25741 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom
∫1) |
| 86 | | 0re 11263 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
| 87 | | i1ff 25711 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
| 88 | 87 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
| 89 | | max1 13227 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → 0 ≤ if(0 ≤
(𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 90 | 86, 88, 89 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 91 | 90 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom ∫1
→ ∀𝑡 ∈
ℝ 0 ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 92 | | ax-resscn 11212 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
| 93 | 92 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ dom ∫1
→ ℝ ⊆ ℂ) |
| 94 | | fvex 6919 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔‘𝑡) ∈ V |
| 95 | | c0ex 11255 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 96 | 94, 95 | ifex 4576 |
. . . . . . . . . . . . . . . 16
⊢ if(0 ≤
(𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ V |
| 97 | 96, 84 | fnmpti 6711 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) Fn ℝ |
| 98 | 97 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) Fn ℝ) |
| 99 | 93, 98 | 0pledm 25708 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ (ℝ × {0})
∘r ≤ (𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 100 | | reex 11246 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
| 101 | 100 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ dom ∫1
→ ℝ ∈ V) |
| 102 | 95 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ∈ V) |
| 103 | | ifcl 4571 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔‘𝑡) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) |
| 104 | 88, 86, 103 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) |
| 105 | | fconstmpt 5747 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
× {0}) = (𝑡 ∈
ℝ ↦ 0) |
| 106 | 105 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ dom ∫1
→ (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)) |
| 107 | | eqidd 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 108 | 101, 102,
104, 106, 107 | ofrfval2 7718 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ ((ℝ × {0}) ∘r ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 109 | 99, 108 | bitrd 279 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom ∫1
→ (0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ ∀𝑡 ∈ ℝ 0 ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 110 | 91, 109 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ dom ∫1
→ 0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 111 | | itg2itg1 25771 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 112 | 85, 110, 111 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = (∫1‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 113 | | itg1cl 25720 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 →
(∫1‘(𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) |
| 114 | 85, 113 | syl 17 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ (∫1‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) |
| 115 | 112, 114 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (𝑔 ∈ dom ∫1
→ (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) |
| 116 | 115 | ad2antlr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ ¬ (∫1‘𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) |
| 117 | | ltnle 11340 |
. . . . . . . . . 10
⊢
((((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) ∈ ℝ ∧
(∫1‘𝑔)
∈ ℝ) → (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫1‘𝑔) ↔ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) |
| 118 | 65, 82, 117 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫1‘𝑔) ↔ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) |
| 119 | 118 | biimpar 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ ¬ (∫1‘𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫1‘𝑔)) |
| 120 | | max2 13229 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (𝑔‘𝑡) ∈ ℝ) → (𝑔‘𝑡) ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 121 | 86, 88, 120 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 122 | 121 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom ∫1
→ ∀𝑡 ∈
ℝ (𝑔‘𝑡) ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 123 | 87 | feqmptd 6977 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 = (𝑡 ∈ ℝ ↦ (𝑔‘𝑡))) |
| 124 | 101, 88, 104, 123, 107 | ofrfval2 7718 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ dom ∫1
→ (𝑔
∘r ≤ (𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ ∀𝑡 ∈ ℝ (𝑔‘𝑡) ≤ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 125 | 122, 124 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ dom ∫1
→ 𝑔
∘r ≤ (𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 126 | | itg1le 25748 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ dom ∫1
∧ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 ∧
𝑔 ∘r ≤
(𝑡 ∈ ℝ ↦
if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) → (∫1‘𝑔) ≤
(∫1‘(𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 127 | 85, 125, 126 | mpd3an23 1465 |
. . . . . . . . . 10
⊢ (𝑔 ∈ dom ∫1
→ (∫1‘𝑔) ≤ (∫1‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 128 | 127, 112 | breqtrrd 5171 |
. . . . . . . . 9
⊢ (𝑔 ∈ dom ∫1
→ (∫1‘𝑔) ≤ (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 129 | 128 | ad2antlr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ ¬ (∫1‘𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → (∫1‘𝑔) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 130 | 81, 83, 116, 119, 129 | ltletrd 11421 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ ¬ (∫1‘𝑔) ≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 131 | 130 | adantrl 716 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ (𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 132 | | i1fmbf 25710 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 →
(𝑡 ∈ ℝ ↦
if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ MblFn) |
| 133 | 85, 132 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ MblFn) |
| 134 | 133 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ MblFn) |
| 135 | | elrege0 13494 |
. . . . . . . . . . . . . . . . 17
⊢ (if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ (0[,)+∞) ↔ (if(0 ≤
(𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
(𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 136 | 104, 90, 135 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ (0[,)+∞)) |
| 137 | 136 | fmpttd 7135 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡),
0)):ℝ⟶(0[,)+∞)) |
| 138 | 137 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡),
0)):ℝ⟶(0[,)+∞)) |
| 139 | 115 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) |
| 140 | 104 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ) |
| 141 | 140 | negcld 11607 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ) |
| 142 | 140, 141 | ifcld 4572 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ if(0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℂ) |
| 143 | | subcl 11507 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℂ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℂ) |
| 144 | 32, 142, 143 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℂ) |
| 145 | 144 | anassrs 467 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℂ) |
| 146 | 145 | abscld 15475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) ∈ ℝ) |
| 147 | 145 | absge0d 15483 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) |
| 148 | | elrege0 13494 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) ∈ (0[,)+∞) ↔
((abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) ∈ ℝ ∧ 0 ≤
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) |
| 149 | 146, 147,
148 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) ∈
(0[,)+∞)) |
| 150 | 149 | fmpttd 7135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡),
0))))):ℝ⟶(0[,)+∞)) |
| 151 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → (𝑥 ∈ 𝐷 ↔ 𝑡 ∈ 𝐷)) |
| 152 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) |
| 153 | 151, 152 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) |
| 154 | 153 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑡 → (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 155 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) |
| 156 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ V |
| 157 | 154, 155,
156 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 158 | 154 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → (0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ↔ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 159 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑡 → (𝑔‘𝑥) = (𝑔‘𝑡)) |
| 160 | 159 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑡 → (0 ≤ (𝑔‘𝑥) ↔ 0 ≤ (𝑔‘𝑡))) |
| 161 | 160, 159 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) = if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 162 | 161 | negeqd 11502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑡 → -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) = -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 163 | 158, 161,
162 | ifbieq12d 4554 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑡 → if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) = if(0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 164 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 165 | | negex 11506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ -if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ V |
| 166 | 96, 165 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ V |
| 167 | 163, 164,
166 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡) = if(0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 168 | 157, 167 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ ℝ → (((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 169 | 168 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ ℝ →
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) |
| 170 | 169 | mpteq2ia 5245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ ℝ ↦
(abs‘(((𝑥 ∈
ℝ ↦ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) |
| 171 | 170 | fveq2i 6909 |
. . . . . . . . . . . . . . 15
⊢
(∫2‘(𝑡 ∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) |
| 172 | 100 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ∈
V) |
| 173 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔‘𝑥) ∈ V |
| 174 | 173, 95 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0) ∈ V |
| 175 | 174, 95 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0) ∈ V |
| 176 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0) ∈ V) |
| 177 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) ∈ V |
| 178 | 95, 177 | ifex 4576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ V |
| 179 | 178 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ V) |
| 180 | | ffn 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷) |
| 181 | | frn 6743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝐷⟶ℂ → ran 𝐹 ⊆ ℂ) |
| 182 | | ref 15151 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
ℜ:ℂ⟶ℝ |
| 183 | | ffn 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(ℜ:ℂ⟶ℝ → ℜ Fn
ℂ) |
| 184 | 182, 183 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ℜ Fn
ℂ |
| 185 | | fnco 6686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℜ
Fn ℂ ∧ 𝐹 Fn 𝐷 ∧ ran 𝐹 ⊆ ℂ) → (ℜ ∘
𝐹) Fn 𝐷) |
| 186 | 184, 185 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹 Fn 𝐷 ∧ ran 𝐹 ⊆ ℂ) → (ℜ ∘
𝐹) Fn 𝐷) |
| 187 | 180, 181,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐹:𝐷⟶ℂ → (ℜ ∘ 𝐹) Fn 𝐷) |
| 188 | | elpreima 7078 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℜ
∘ 𝐹) Fn 𝐷 → (𝑥 ∈ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥 ∈ 𝐷 ∧ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞)))) |
| 189 | 4, 187, 188 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑥 ∈ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥 ∈ 𝐷 ∧ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞)))) |
| 190 | | fco 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐷⟶ℂ) → (ℜ ∘
𝐹):𝐷⟶ℝ) |
| 191 | 182, 4, 190 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (ℜ ∘ 𝐹):𝐷⟶ℝ) |
| 192 | 191 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((ℜ ∘ 𝐹)‘𝑥) ∈ ℝ) |
| 193 | 192 | biantrurd 532 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (0 ≤ ((ℜ ∘ 𝐹)‘𝑥) ↔ (((ℜ ∘ 𝐹)‘𝑥) ∈ ℝ ∧ 0 ≤ ((ℜ
∘ 𝐹)‘𝑥)))) |
| 194 | | elrege0 13494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((ℜ
∘ 𝐹)‘𝑥) ∈ (0[,)+∞) ↔
(((ℜ ∘ 𝐹)‘𝑥) ∈ ℝ ∧ 0 ≤ ((ℜ
∘ 𝐹)‘𝑥))) |
| 195 | 193, 194 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (0 ≤ ((ℜ ∘ 𝐹)‘𝑥) ↔ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞))) |
| 196 | | fvco3 7008 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝑥 ∈ 𝐷) → ((ℜ ∘ 𝐹)‘𝑥) = (ℜ‘(𝐹‘𝑥))) |
| 197 | 4, 196 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((ℜ ∘ 𝐹)‘𝑥) = (ℜ‘(𝐹‘𝑥))) |
| 198 | 197 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (0 ≤ ((ℜ ∘ 𝐹)‘𝑥) ↔ 0 ≤ (ℜ‘(𝐹‘𝑥)))) |
| 199 | 195, 198 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤
(ℜ‘(𝐹‘𝑥)))) |
| 200 | 199 | pm5.32da 579 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑥 ∈ 𝐷 ∧ ((ℜ ∘ 𝐹)‘𝑥) ∈ (0[,)+∞)) ↔ (𝑥 ∈ 𝐷 ∧ 0 ≤ (ℜ‘(𝐹‘𝑥))))) |
| 201 | 189, 200 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑥 ∈ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥 ∈ 𝐷 ∧ 0 ≤ (ℜ‘(𝐹‘𝑥))))) |
| 202 | 201 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ↔ (𝑥 ∈ 𝐷 ∧ 0 ≤ (ℜ‘(𝐹‘𝑥))))) |
| 203 | | eldif 3961 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ (ℝ ∖ 𝐷) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐷)) |
| 204 | 203 | baibr 536 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ → (¬
𝑥 ∈ 𝐷 ↔ 𝑥 ∈ (ℝ ∖ 𝐷))) |
| 205 | | 0le0 12367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ≤
0 |
| 206 | 205, 18 | breqtrri 5170 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ≤
(ℜ‘0) |
| 207 | 206 | biantru 529 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑥 ∈ 𝐷 ↔ (¬ 𝑥 ∈ 𝐷 ∧ 0 ≤
(ℜ‘0))) |
| 208 | 204, 207 | bitr3di 286 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ 𝐷) ↔ (¬ 𝑥 ∈ 𝐷 ∧ 0 ≤
(ℜ‘0)))) |
| 209 | 208 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ 𝐷) ↔ (¬ 𝑥 ∈ 𝐷 ∧ 0 ≤
(ℜ‘0)))) |
| 210 | 202, 209 | orbi12d 919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∨ 𝑥 ∈ (ℝ ∖ 𝐷)) ↔ ((𝑥 ∈ 𝐷 ∧ 0 ≤ (ℜ‘(𝐹‘𝑥))) ∨ (¬ 𝑥 ∈ 𝐷 ∧ 0 ≤
(ℜ‘0))))) |
| 211 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ↔ (𝑥 ∈ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∨ 𝑥 ∈ (ℝ ∖ 𝐷))) |
| 212 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = (𝐹‘𝑥) → (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℜ‘(𝐹‘𝑥))) |
| 213 | 212 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = (𝐹‘𝑥) → (0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) ↔ 0 ≤ (ℜ‘(𝐹‘𝑥)))) |
| 214 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = 0 → (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)) = (ℜ‘0)) |
| 215 | 214 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0) = 0 → (0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ↔ 0 ≤
(ℜ‘0))) |
| 216 | 213, 215 | elimif 4563 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)) ↔ ((𝑥 ∈ 𝐷 ∧ 0 ≤ (ℜ‘(𝐹‘𝑥))) ∨ (¬ 𝑥 ∈ 𝐷 ∧ 0 ≤
(ℜ‘0)))) |
| 217 | 210, 211,
216 | 3bitr4g 314 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ↔ 0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))) |
| 218 | 217 | ifbid 4549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0) = if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) |
| 219 | 218 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0))) |
| 220 | 217 | ifbid 4549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) = if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) |
| 221 | 220 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))))) |
| 222 | 172, 176,
179, 219, 221 | offval2 7717 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))))) = (𝑥 ∈ ℝ ↦ (if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))))) |
| 223 | | ovif12 7533 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) = if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), (if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) + 0), (0 + (-1 · if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0)))) |
| 224 | 87 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑔‘𝑥) ∈
ℝ) |
| 225 | 224 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑔‘𝑥) ∈
ℂ) |
| 226 | | 0cn 11253 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℂ |
| 227 | | ifcl 4571 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ)
→ if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) ∈ ℂ) |
| 228 | 225, 226,
227 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) ∈ ℂ) |
| 229 | 228 | addridd 11461 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) + 0) = if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 230 | 228 | mulm1d 11715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) = -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 231 | 230 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (0 + (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) = (0 + -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 232 | 228 | negcld 11607 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) ∈ ℂ) |
| 233 | 232 | addlidd 11462 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (0 + -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) = -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 234 | 231, 233 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (0 + (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) = -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 235 | 229, 234 | ifeq12d 4547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), (if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0) + 0), (0 + (-1 · if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0)))) = if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 236 | 223, 235 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) = if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 237 | 236 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 ∈ dom ∫1
→ (𝑥 ∈ ℝ
↦ (if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), 0) + if(0 ≤ (ℜ‘if(𝑥 ∈ 𝐷, (𝐹‘𝑥), 0)), 0, (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))))) = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) |
| 238 | 222, 237 | sylan9eq 2797 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))))) = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) |
| 239 | | 0xr 11308 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℝ* |
| 240 | | pnfxr 11315 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ +∞
∈ ℝ* |
| 241 | | 0ltpnf 13164 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 <
+∞ |
| 242 | | snunioo 13518 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
< +∞) → ({0} ∪ (0(,)+∞)) =
(0[,)+∞)) |
| 243 | 239, 240,
241, 242 | mp3an 1463 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({0}
∪ (0(,)+∞)) = (0[,)+∞) |
| 244 | 243 | imaeq2i 6076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(ℜ ∘ 𝐹) “ ({0} ∪ (0(,)+∞))) =
(◡(ℜ ∘ 𝐹) “ (0[,)+∞)) |
| 245 | | imaundi 6169 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡(ℜ ∘ 𝐹) “ ({0} ∪ (0(,)+∞))) =
((◡(ℜ ∘ 𝐹) “ {0}) ∪ (◡(ℜ ∘ 𝐹) “ (0(,)+∞))) |
| 246 | 244, 245 | eqtr3i 2767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) = ((◡(ℜ ∘ 𝐹) “ {0}) ∪ (◡(ℜ ∘ 𝐹) “ (0(,)+∞))) |
| 247 | | ismbfcn 25664 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:𝐷⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ
∘ 𝐹) ∈
MblFn))) |
| 248 | 4, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ
∘ 𝐹) ∈
MblFn))) |
| 249 | 42, 248 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ
∘ 𝐹) ∈
MblFn)) |
| 250 | 249 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (ℜ ∘ 𝐹) ∈ MblFn) |
| 251 | | mbfimasn 25667 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℜ ∘ 𝐹):𝐷⟶ℝ ∧ 0 ∈ ℝ)
→ (◡(ℜ ∘ 𝐹) “ {0}) ∈ dom
vol) |
| 252 | 86, 251 | mp3an3 1452 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℜ ∘ 𝐹):𝐷⟶ℝ) → (◡(ℜ ∘ 𝐹) “ {0}) ∈ dom
vol) |
| 253 | | mbfima 25665 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℜ ∘ 𝐹):𝐷⟶ℝ) → (◡(ℜ ∘ 𝐹) “ (0(,)+∞)) ∈ dom
vol) |
| 254 | | unmbl 25572 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((◡(ℜ ∘ 𝐹) “ {0}) ∈ dom vol ∧ (◡(ℜ ∘ 𝐹) “ (0(,)+∞)) ∈ dom vol)
→ ((◡(ℜ ∘ 𝐹) “ {0}) ∪ (◡(ℜ ∘ 𝐹) “ (0(,)+∞))) ∈ dom
vol) |
| 255 | 252, 253,
254 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((ℜ
∘ 𝐹) ∈ MblFn
∧ (ℜ ∘ 𝐹):𝐷⟶ℝ) → ((◡(ℜ ∘ 𝐹) “ {0}) ∪ (◡(ℜ ∘ 𝐹) “ (0(,)+∞))) ∈ dom
vol) |
| 256 | 250, 191,
255 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((◡(ℜ ∘ 𝐹) “ {0}) ∪ (◡(ℜ ∘ 𝐹) “ (0(,)+∞))) ∈ dom
vol) |
| 257 | 246, 256 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∈ dom
vol) |
| 258 | 4 | fdmd 6746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 259 | | mbfdm 25661 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 260 | 42, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
| 261 | 258, 260 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐷 ∈ dom vol) |
| 262 | | difmbl 25578 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℝ
∈ dom vol ∧ 𝐷
∈ dom vol) → (ℝ ∖ 𝐷) ∈ dom vol) |
| 263 | 11, 261, 262 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ ∖ 𝐷) ∈ dom
vol) |
| 264 | | unmbl 25572 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∈ dom vol
∧ (ℝ ∖ 𝐷)
∈ dom vol) → ((◡(ℜ
∘ 𝐹) “
(0[,)+∞)) ∪ (ℝ ∖ 𝐷)) ∈ dom vol) |
| 265 | 257, 263,
264 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ∈ dom
vol) |
| 266 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑥 → (𝑔‘𝑡) = (𝑔‘𝑥)) |
| 267 | 266 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑥 → (0 ≤ (𝑔‘𝑡) ↔ 0 ≤ (𝑔‘𝑥))) |
| 268 | 267, 266 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑥 → if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) = if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 269 | 268, 84, 174 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))‘𝑥) = if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 270 | 269 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0) = ((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))‘𝑥)) |
| 271 | 270 | ifeq1d 4545 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0) = if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))‘𝑥), 0)) |
| 272 | 271 | mpteq2ia 5245 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))‘𝑥), 0)) |
| 273 | 272 | i1fres 25740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 ∧
((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ∈ dom vol)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) ∈ dom
∫1) |
| 274 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 →
(𝑡 ∈ ℝ ↦
if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom
∫1) |
| 275 | | neg1rr 12381 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ -1 ∈
ℝ |
| 276 | 275 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 → -1
∈ ℝ) |
| 277 | 274, 276 | i1fmulc 25738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 →
((ℝ × {-1}) ∘f · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ dom
∫1) |
| 278 | | cmmbl 25569 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ∈ dom vol
→ (ℝ ∖ ((◡(ℜ
∘ 𝐹) “
(0[,)+∞)) ∪ (ℝ ∖ 𝐷))) ∈ dom vol) |
| 279 | | ifnot 4578 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(¬
𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), (-1 ·
if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)), 0) = if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 280 | | eldif 3961 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ (ℝ ∖ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷))) ↔ (𝑥 ∈ ℝ ∧ ¬
𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)))) |
| 281 | 280 | baibr 536 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℝ → (¬
𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ↔ 𝑥 ∈ (ℝ ∖ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷))))) |
| 282 | | tru 1544 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
⊤ |
| 283 | | negex 11506 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ -1 ∈
V |
| 284 | 283 | fconst 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℝ
× {-1}):ℝ⟶{-1} |
| 285 | | ffn 6736 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((ℝ
× {-1}):ℝ⟶{-1} → (ℝ × {-1}) Fn
ℝ) |
| 286 | 284, 285 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⊤
→ (ℝ × {-1}) Fn ℝ) |
| 287 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⊤
→ (𝑡 ∈ ℝ
↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) Fn ℝ) |
| 288 | 100 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⊤
→ ℝ ∈ V) |
| 289 | | inidm 4227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℝ
∩ ℝ) = ℝ |
| 290 | 283 | fvconst2 7224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑥 ∈ ℝ → ((ℝ
× {-1})‘𝑥) =
-1) |
| 291 | 290 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((⊤ ∧ 𝑥
∈ ℝ) → ((ℝ × {-1})‘𝑥) = -1) |
| 292 | 269 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((⊤ ∧ 𝑥
∈ ℝ) → ((𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))‘𝑥) = if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) |
| 293 | 286, 287,
288, 288, 289, 291, 292 | ofval 7708 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((⊤ ∧ 𝑥
∈ ℝ) → (((ℝ × {-1}) ∘f ·
(𝑡 ∈ ℝ ↦
if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))‘𝑥) = (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 294 | 282, 293 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ →
(((ℝ × {-1}) ∘f · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))‘𝑥) = (-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) |
| 295 | 294 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℝ → (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)) = (((ℝ × {-1})
∘f · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))‘𝑥)) |
| 296 | 281, 295 | ifbieq1d 4550 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → if(¬
𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), (-1 ·
if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)), 0) = if(𝑥 ∈ (ℝ ∖ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷))), (((ℝ
× {-1}) ∘f · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))‘𝑥), 0)) |
| 297 | 279, 296 | eqtr3id 2791 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) = if(𝑥 ∈ (ℝ ∖ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷))), (((ℝ
× {-1}) ∘f · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))‘𝑥), 0)) |
| 298 | 297 | mpteq2ia 5245 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷))), (((ℝ
× {-1}) ∘f · (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))‘𝑥), 0)) |
| 299 | 298 | i1fres 25740 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((ℝ × {-1}) ∘f · (𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ dom ∫1 ∧
(ℝ ∖ ((◡(ℜ ∘
𝐹) “ (0[,)+∞))
∪ (ℝ ∖ 𝐷)))
∈ dom vol) → (𝑥
∈ ℝ ↦ if(𝑥
∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪
(ℝ ∖ 𝐷)), 0,
(-1 · if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) ∈ dom
∫1) |
| 300 | 277, 278,
299 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 ∧
((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ∈ dom vol)
→ (𝑥 ∈ ℝ
↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))) ∈ dom
∫1) |
| 301 | 273, 300 | i1fadd 25730 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ dom ∫1 ∧
((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)) ∈ dom vol)
→ ((𝑥 ∈ ℝ
↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))))) ∈ dom
∫1) |
| 302 | 85, 265, 301 | syl2anr 597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), if(0 ≤
(𝑔‘𝑥), (𝑔‘𝑥), 0), 0)) ∘f + (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ((◡(ℜ ∘ 𝐹) “ (0[,)+∞)) ∪ (ℝ
∖ 𝐷)), 0, (-1
· if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))))) ∈ dom
∫1) |
| 303 | 238, 302 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ dom
∫1) |
| 304 | 154 | cbvmptv 5255 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) = (𝑡 ∈ ℝ ↦
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) |
| 305 | 304, 31 | eqeltrid 2845 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈
𝐿1) |
| 306 | 9, 304 | fmptd 7134 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ) |
| 307 | 305, 306 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
| 308 | 307 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → ((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥),
0))):ℝ⟶ℝ)) |
| 309 | | ftc1anclem4 37703 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ dom ∫1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡))))) ∈ ℝ) |
| 310 | 309 | 3expb 1121 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ dom ∫1 ∧
((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))) ∈ 𝐿1 ∧
(𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0))):ℝ⟶ℝ)) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡))))) ∈ ℝ) |
| 311 | 303, 308,
310 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(((𝑥 ∈ ℝ ↦
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)))‘𝑡) − ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡))))) ∈ ℝ) |
| 312 | 171, 311 | eqeltrrid 2846 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) ∈ ℝ) |
| 313 | 134, 138,
139, 150, 312 | itg2addnc 37681 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))))) |
| 314 | 100 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → ℝ
∈ V) |
| 315 | 96 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) → if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ V) |
| 316 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 317 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) |
| 318 | 314, 315,
146, 316, 317 | offval2 7717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) → ((𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) = (𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) |
| 319 | 318 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
(∫2‘((𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∘f + (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))))) |
| 320 | 313, 319 | eqtr3d 2779 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))))) |
| 321 | 320 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦ (if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))))) |
| 322 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝜑 ∧ 𝑔 ∈ dom
∫1) |
| 323 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡𝑔 |
| 324 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡
∘r ≤ |
| 325 | | nfmpt1 5250 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑡(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 326 | 323, 324,
325 | nfbr 5190 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 327 | 322, 326 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 328 | | anass 468 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) ↔ (𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈
ℝ))) |
| 329 | 87 | ffnd 6737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 Fn
ℝ) |
| 330 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ V |
| 331 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) = (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 332 | 330, 331 | fnmpti 6711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) Fn ℝ |
| 333 | 332 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) Fn ℝ) |
| 334 | | eqidd 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) = (𝑔‘𝑡)) |
| 335 | 331 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ V) → ((𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))‘𝑡) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 336 | 330, 335 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ℝ → ((𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))‘𝑡) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 337 | 336 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ ((𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))‘𝑡) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 338 | 329, 333,
101, 101, 289, 334, 337 | ofrval 7709 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 𝑡 ∈ ℝ) → (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 339 | 338 | 3com23 1127 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) → (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 340 | 339 | 3expa 1119 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) → (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 341 | 340 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) → (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 342 | | resubcl 11573 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℝ) |
| 343 | 8, 104, 342 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℝ) |
| 344 | 343 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℝ) |
| 345 | | absid 15335 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 346 | 8, 345 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 347 | 346 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → ((𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ↔ (𝑔‘𝑡) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 348 | 347 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → (𝑔‘𝑡) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 349 | 348 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → (𝑔‘𝑡) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 350 | 349 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → (𝑔‘𝑡) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 351 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔‘𝑡) = if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → ((𝑔‘𝑡) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 352 | | breq1 5146 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 = if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → (0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ↔ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 353 | 351, 352 | ifboth 4565 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔‘𝑡) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 354 | 350, 353 | sylancom 588 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 355 | | subge0 11776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) → (0 ≤
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 356 | 8, 104, 355 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) → (0 ≤
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 357 | 356 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → (0 ≤
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ↔ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 358 | 354, 357 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) → 0 ≤ ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 359 | 344, 358 | absidd 15461 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 360 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) → if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 361 | 360 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 362 | 361 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 363 | 362 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 364 | 8 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 365 | 345 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 366 | 364, 365 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) →
((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 367 | 359, 363,
366 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ 0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 368 | 104 | renegcld 11690 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) |
| 369 | | resubcl 11573 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℝ) |
| 370 | 8, 368, 369 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℝ) |
| 371 | 370 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ∈ ℝ) |
| 372 | 88 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (𝑔‘𝑡) ∈ ℝ) |
| 373 | 8 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 374 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ∈ ℝ) |
| 375 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) < 0 ↔ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) |
| 376 | 86, 375 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < 0 ↔ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) |
| 377 | | ltle 11349 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) < 0 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0)) |
| 378 | 86, 377 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) < 0 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0)) |
| 379 | 376, 378 | sylbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ → (¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0)) |
| 380 | 379 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0) |
| 381 | | absnid 15337 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) ≤ 0) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 382 | 380, 381 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 383 | 382 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → ((𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ↔ (𝑔‘𝑡) ≤ -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 384 | 383 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → (𝑔‘𝑡) ≤ -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 385 | 384 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (𝑔‘𝑡) ≤ -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 386 | 374, 385 | sylanl1 680 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (𝑔‘𝑡) ≤ -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 387 | 372, 373,
386 | lenegcon2d 11846 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -(𝑔‘𝑡)) |
| 388 | | simpll 767 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → 𝜑) |
| 389 | 86 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 0 ∈
ℝ) |
| 390 | 8, 389 | ltnled 11408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < 0 ↔ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)))) |
| 391 | 8, 86, 377 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) < 0 → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0)) |
| 392 | 390, 391 | sylbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0)) |
| 393 | 392 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0) |
| 394 | 388, 393 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0) |
| 395 | | negeq 11500 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔‘𝑡) = if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → -(𝑔‘𝑡) = -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 396 | 395 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔‘𝑡) = if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -(𝑔‘𝑡) ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 397 | | neg0 11555 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ -0 =
0 |
| 398 | | negeq 11500 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (0 = if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → -0 = -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 399 | 397, 398 | eqtr3id 2791 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 = if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → 0 = -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 400 | 399 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 = if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 401 | 396, 400 | ifboth 4565 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -(𝑔‘𝑡) ∧ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 402 | 387, 394,
401 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 403 | | suble0 11777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℝ ∧ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℝ) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 404 | 8, 368, 403 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
(((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 405 | 404 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → (((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ≤ 0 ↔ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 406 | 402, 405 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) ≤ 0) |
| 407 | 371, 406 | absnidd 15452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = -((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 408 | | subneg 11558 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 409 | 408 | negeqd 11502 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ) →
-((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = -((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) + if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 410 | | negdi2 11567 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ) →
-((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) + if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 411 | 409, 410 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) ∈ ℂ ∧ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ) →
-((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 412 | 32, 140, 411 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) →
-((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 413 | 412 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) → -((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 414 | 407, 413 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 415 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬ 0
≤ (ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) → if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) |
| 416 | 415 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬ 0
≤ (ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) → ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 417 | 416 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 0
≤ (ℜ‘if(𝑡
∈ 𝐷, (𝐹‘𝑡), 0)) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 418 | 417 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 419 | 8, 381 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) ≤ 0) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 420 | 393, 419 | syldan 591 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) = -(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) |
| 421 | 420 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 422 | 388, 421 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)) = (-(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 423 | 414, 418,
422 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬ 0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 424 | 367, 423 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) = ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 425 | 424 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) = (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 426 | 53 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) |
| 427 | | pncan3 11516 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) ∈ ℂ ∧
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) ∈ ℂ) → (if(0 ≤
(𝑔‘𝑡), (𝑔‘𝑡), 0) + ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 428 | 140, 426,
427 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) → (if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 429 | 428 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + ((abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))) − if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 430 | 425, 429 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ (𝑔‘𝑡) ≤ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) → (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 431 | 341, 430 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ dom ∫1 ∧ 𝑡 ∈ ℝ)) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) → (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 432 | 328, 431 | sylanb 581 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑡 ∈ ℝ) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) → (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 433 | 432 | an32s 652 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ∧ 𝑡 ∈ ℝ) → (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) = (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) |
| 434 | 327, 433 | mpteq2da 5240 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) → (𝑡 ∈ ℝ ↦ (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) = (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) |
| 435 | 434 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
(∫2‘(𝑡
∈ ℝ ↦ (if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0) + (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))))) |
| 436 | 321, 435 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))))) |
| 437 | 436 | breq1d 5153 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ dom ∫1) ∧ 𝑔 ∘r ≤ (𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
(((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌) ↔ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 438 | 437 | adantllr 719 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
(((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌) ↔ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 439 | 312 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) ∈ ℝ) |
| 440 | 63 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ 𝑌 ∈
ℝ) |
| 441 | 115 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ (∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) |
| 442 | 439, 440,
441 | ltadd2d 11417 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 443 | 442 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 444 | | ltsubadd 11733 |
. . . . . . . . . . 11
⊢
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) ∈ ℝ ∧ 𝑌 ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ∈ ℝ) →
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 445 | 60, 63, 115, 444 | syl3an 1161 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+ ∧ 𝑔 ∈ dom ∫1)
→ (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 446 | 445 | 3expa 1119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ (((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 447 | 446 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
(((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) ↔
(∫2‘(𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) <
((∫2‘(𝑡 ∈ ℝ ↦ if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) + 𝑌))) |
| 448 | 438, 443,
447 | 3bitr4d 311 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ 𝑔 ∘r
≤ (𝑡 ∈ ℝ
↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) |
| 449 | 448 | adantrr 717 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ (𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) → ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 ↔ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌) < (∫2‘(𝑡 ∈ ℝ ↦ if(0
≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) |
| 450 | 131, 449 | mpbird 257 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
∧ (𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌))) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌) |
| 451 | 450 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑌 ∈ ℝ+) ∧ 𝑔 ∈ dom ∫1)
→ ((𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌)) |
| 452 | 451 | reximdva 3168 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → ∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌)) |
| 453 | | fveq1 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) → (𝑓‘𝑡) = ((𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0)))‘𝑡)) |
| 454 | 453, 167 | sylan9eq 2797 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∧ 𝑡 ∈ ℝ) → (𝑓‘𝑡) = if(0 ≤ (ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))) |
| 455 | 454 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ ((𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∧ 𝑡 ∈ ℝ) →
((ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)) = ((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))) |
| 456 | 455 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∧ 𝑡 ∈ ℝ) →
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))) = (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))) |
| 457 | 456 | mpteq2dva 5242 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) → (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡)))) = (𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) |
| 458 | 457 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) = (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0))))))) |
| 459 | 458 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑓 = (𝑥 ∈ ℝ ↦ if(0 ≤
(ℜ‘if(𝑥 ∈
𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌 ↔ (∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌)) |
| 460 | 459 | rspcev 3622 |
. . . . . . 7
⊢ (((𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ dom ∫1 ∧
(∫2‘(𝑡
∈ ℝ ↦ (abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌) → ∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌) |
| 461 | 460 | ex 412 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ↦ if(0
≤ (ℜ‘if(𝑥
∈ 𝐷, (𝐹‘𝑥), 0)), if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0), -if(0 ≤ (𝑔‘𝑥), (𝑔‘𝑥), 0))) ∈ dom ∫1 →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌)) |
| 462 | 303, 461 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ dom ∫1) →
((∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌)) |
| 463 | 462 | rexlimdva 3155 |
. . . 4
⊢ (𝜑 → (∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌)) |
| 464 | 463 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑔 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − if(0 ≤
(ℜ‘if(𝑡 ∈
𝐷, (𝐹‘𝑡), 0)), if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0), -if(0 ≤ (𝑔‘𝑡), (𝑔‘𝑡), 0)))))) < 𝑌 → ∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌)) |
| 465 | 452, 464 | syld 47 |
. 2
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
(∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ (𝑡
∈ ℝ ↦ (abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)))) ∧ ¬
(∫1‘𝑔)
≤ ((∫2‘(𝑡 ∈ ℝ ↦
(abs‘(ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0))))) − 𝑌)) → ∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌)) |
| 466 | 80, 465 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑌 ∈ ℝ+) →
∃𝑓 ∈ dom
∫1(∫2‘(𝑡 ∈ ℝ ↦
(abs‘((ℜ‘if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0)) − (𝑓‘𝑡))))) < 𝑌) |