Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem2 Structured version   Visualization version   GIF version

Theorem clsk1indlem2 44055
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem2 𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem2
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑠 = {∅} → 𝑠 = {∅})
2 snsspr1 4814 . . . . . . . . . 10 {∅} ⊆ {∅, 1o}
31, 2eqsstrdi 4028 . . . . . . . . 9 (𝑠 = {∅} → 𝑠 ⊆ {∅, 1o})
43ancli 548 . . . . . . . 8 (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}))
54con3i 154 . . . . . . 7 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) → ¬ 𝑠 = {∅})
6 ssid 4006 . . . . . . 7 𝑠𝑠
75, 6jctir 520 . . . . . 6 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) → (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
87orri 863 . . . . 5 ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
98a1i 11 . . . 4 (𝑠 ∈ 𝒫 3o → ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
10 sseq2 4010 . . . . 5 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅, 1o} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ {∅, 1o}))
11 sseq2 4010 . . . . 5 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠𝑠))
1210, 11elimif 4563 . . . 4 (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
139, 12sylibr 234 . . 3 (𝑠 ∈ 𝒫 3o𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠))
14 eqeq1 2741 . . . . 5 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
15 id 22 . . . . 5 (𝑟 = 𝑠𝑟 = 𝑠)
1614, 15ifbieq2d 4552 . . . 4 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
17 clsk1indlem.k . . . 4 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
18 prex 5437 . . . . 5 {∅, 1o} ∈ V
19 vex 3484 . . . . 5 𝑠 ∈ V
2018, 19ifex 4576 . . . 4 if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ V
2116, 17, 20fvmpt 7016 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
2213, 21sseqtrrd 4021 . 2 (𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠))
2322rgen 3063 1 𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  wss 3951  c0 4333  ifcif 4525  𝒫 cpw 4600  {csn 4626  {cpr 4628  cmpt 5225  cfv 6561  1oc1o 8499  3oc3o 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569
This theorem is referenced by:  clsk1independent  44059
  Copyright terms: Public domain W3C validator