Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem2 Structured version   Visualization version   GIF version

Theorem clsk1indlem2 41652
Description: The ansatz closure function (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
Assertion
Ref Expression
clsk1indlem2 𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem2
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑠 = {∅} → 𝑠 = {∅})
2 snsspr1 4747 . . . . . . . . . 10 {∅} ⊆ {∅, 1o}
31, 2eqsstrdi 3975 . . . . . . . . 9 (𝑠 = {∅} → 𝑠 ⊆ {∅, 1o})
43ancli 549 . . . . . . . 8 (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}))
54con3i 154 . . . . . . 7 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) → ¬ 𝑠 = {∅})
6 ssid 3943 . . . . . . 7 𝑠𝑠
75, 6jctir 521 . . . . . 6 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) → (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
87orri 859 . . . . 5 ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
98a1i 11 . . . 4 (𝑠 ∈ 𝒫 3o → ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
10 sseq2 3947 . . . . 5 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = {∅, 1o} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ {∅, 1o}))
11 sseq2 3947 . . . . 5 (if(𝑠 = {∅}, {∅, 1o}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠𝑠))
1210, 11elimif 4496 . . . 4 (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
139, 12sylibr 233 . . 3 (𝑠 ∈ 𝒫 3o𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠))
14 eqeq1 2742 . . . . 5 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
15 id 22 . . . . 5 (𝑟 = 𝑠𝑟 = 𝑠)
1614, 15ifbieq2d 4485 . . . 4 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
17 clsk1indlem.k . . . 4 𝐾 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
18 prex 5355 . . . . 5 {∅, 1o} ∈ V
19 vex 3436 . . . . 5 𝑠 ∈ V
2018, 19ifex 4509 . . . 4 if(𝑠 = {∅}, {∅, 1o}, 𝑠) ∈ V
2116, 17, 20fvmpt 6875 . . 3 (𝑠 ∈ 𝒫 3o → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠))
2213, 21sseqtrrd 3962 . 2 (𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠))
2322rgen 3074 1 𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wss 3887  c0 4256  ifcif 4459  𝒫 cpw 4533  {csn 4561  {cpr 4563  cmpt 5157  cfv 6433  1oc1o 8290  3oc3o 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  clsk1independent  41656
  Copyright terms: Public domain W3C validator