Proof of Theorem clsk1indlem2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . . . . . . . . . 10
⊢ (𝑠 = {∅} → 𝑠 = {∅}) | 
| 2 |  | snsspr1 4814 | . . . . . . . . . 10
⊢ {∅}
⊆ {∅, 1o} | 
| 3 | 1, 2 | eqsstrdi 4028 | . . . . . . . . 9
⊢ (𝑠 = {∅} → 𝑠 ⊆ {∅,
1o}) | 
| 4 | 3 | ancli 548 | . . . . . . . 8
⊢ (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o})) | 
| 5 | 4 | con3i 154 | . . . . . . 7
⊢ (¬
(𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o}) → ¬ 𝑠 = {∅}) | 
| 6 |  | ssid 4006 | . . . . . . 7
⊢ 𝑠 ⊆ 𝑠 | 
| 7 | 5, 6 | jctir 520 | . . . . . 6
⊢ (¬
(𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o}) → (¬ 𝑠 = {∅} ∧ 𝑠 ⊆ 𝑠)) | 
| 8 | 7 | orri 863 | . . . . 5
⊢ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠 ⊆ 𝑠)) | 
| 9 | 8 | a1i 11 | . . . 4
⊢ (𝑠 ∈ 𝒫 3o
→ ((𝑠 = {∅}
∧ 𝑠 ⊆ {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠 ⊆ 𝑠))) | 
| 10 |  | sseq2 4010 | . . . . 5
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) =
{∅, 1o} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ {∅,
1o})) | 
| 11 |  | sseq2 4010 | . . . . 5
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ 𝑠)) | 
| 12 | 10, 11 | elimif 4563 | . . . 4
⊢ (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨
(¬ 𝑠 = {∅} ∧
𝑠 ⊆ 𝑠))) | 
| 13 | 9, 12 | sylibr 234 | . . 3
⊢ (𝑠 ∈ 𝒫 3o
→ 𝑠 ⊆ if(𝑠 = {∅}, {∅,
1o}, 𝑠)) | 
| 14 |  | eqeq1 2741 | . . . . 5
⊢ (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅})) | 
| 15 |  | id 22 | . . . . 5
⊢ (𝑟 = 𝑠 → 𝑟 = 𝑠) | 
| 16 | 14, 15 | ifbieq2d 4552 | . . . 4
⊢ (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 17 |  | clsk1indlem.k | . . . 4
⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦
if(𝑟 = {∅}, {∅,
1o}, 𝑟)) | 
| 18 |  | prex 5437 | . . . . 5
⊢ {∅,
1o} ∈ V | 
| 19 |  | vex 3484 | . . . . 5
⊢ 𝑠 ∈ V | 
| 20 | 18, 19 | ifex 4576 | . . . 4
⊢ if(𝑠 = {∅}, {∅,
1o}, 𝑠) ∈
V | 
| 21 | 16, 17, 20 | fvmpt 7016 | . . 3
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) | 
| 22 | 13, 21 | sseqtrrd 4021 | . 2
⊢ (𝑠 ∈ 𝒫 3o
→ 𝑠 ⊆ (𝐾‘𝑠)) | 
| 23 | 22 | rgen 3063 | 1
⊢
∀𝑠 ∈
𝒫 3o𝑠
⊆ (𝐾‘𝑠) |