Proof of Theorem clsk1indlem2
| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . . . . . 10
⊢ (𝑠 = {∅} → 𝑠 = {∅}) |
| 2 | | snsspr1 4795 |
. . . . . . . . . 10
⊢ {∅}
⊆ {∅, 1o} |
| 3 | 1, 2 | eqsstrdi 4008 |
. . . . . . . . 9
⊢ (𝑠 = {∅} → 𝑠 ⊆ {∅,
1o}) |
| 4 | 3 | ancli 548 |
. . . . . . . 8
⊢ (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o})) |
| 5 | 4 | con3i 154 |
. . . . . . 7
⊢ (¬
(𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o}) → ¬ 𝑠 = {∅}) |
| 6 | | ssid 3986 |
. . . . . . 7
⊢ 𝑠 ⊆ 𝑠 |
| 7 | 5, 6 | jctir 520 |
. . . . . 6
⊢ (¬
(𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o}) → (¬ 𝑠 = {∅} ∧ 𝑠 ⊆ 𝑠)) |
| 8 | 7 | orri 862 |
. . . . 5
⊢ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠 ⊆ 𝑠)) |
| 9 | 8 | a1i 11 |
. . . 4
⊢ (𝑠 ∈ 𝒫 3o
→ ((𝑠 = {∅}
∧ 𝑠 ⊆ {∅,
1o}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠 ⊆ 𝑠))) |
| 10 | | sseq2 3990 |
. . . . 5
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) =
{∅, 1o} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ {∅,
1o})) |
| 11 | | sseq2 3990 |
. . . . 5
⊢ (if(𝑠 = {∅}, {∅,
1o}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ 𝑠 ⊆ 𝑠)) |
| 12 | 10, 11 | elimif 4543 |
. . . 4
⊢ (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1o}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1o}) ∨
(¬ 𝑠 = {∅} ∧
𝑠 ⊆ 𝑠))) |
| 13 | 9, 12 | sylibr 234 |
. . 3
⊢ (𝑠 ∈ 𝒫 3o
→ 𝑠 ⊆ if(𝑠 = {∅}, {∅,
1o}, 𝑠)) |
| 14 | | eqeq1 2740 |
. . . . 5
⊢ (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅})) |
| 15 | | id 22 |
. . . . 5
⊢ (𝑟 = 𝑠 → 𝑟 = 𝑠) |
| 16 | 14, 15 | ifbieq2d 4532 |
. . . 4
⊢ (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1o}, 𝑟) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 17 | | clsk1indlem.k |
. . . 4
⊢ 𝐾 = (𝑟 ∈ 𝒫 3o ↦
if(𝑟 = {∅}, {∅,
1o}, 𝑟)) |
| 18 | | prex 5412 |
. . . . 5
⊢ {∅,
1o} ∈ V |
| 19 | | vex 3468 |
. . . . 5
⊢ 𝑠 ∈ V |
| 20 | 18, 19 | ifex 4556 |
. . . 4
⊢ if(𝑠 = {∅}, {∅,
1o}, 𝑠) ∈
V |
| 21 | 16, 17, 20 | fvmpt 6991 |
. . 3
⊢ (𝑠 ∈ 𝒫 3o
→ (𝐾‘𝑠) = if(𝑠 = {∅}, {∅, 1o}, 𝑠)) |
| 22 | 13, 21 | sseqtrrd 4001 |
. 2
⊢ (𝑠 ∈ 𝒫 3o
→ 𝑠 ⊆ (𝐾‘𝑠)) |
| 23 | 22 | rgen 3054 |
1
⊢
∀𝑠 ∈
𝒫 3o𝑠
⊆ (𝐾‘𝑠) |