![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elneldisj | Structured version Visualization version GIF version |
Description: The set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element are disjoint. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.) |
Ref | Expression |
---|---|
elneldisj.e | ⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
elneldisj.n | ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} |
Ref | Expression |
---|---|
elneldisj | ⊢ (𝐸 ∩ 𝑁) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elneldisj.e | . . 3 ⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | |
2 | elneldisj.n | . . . 4 ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} | |
3 | df-nel 3045 | . . . . 5 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
4 | 3 | rabbii 3439 | . . . 4 ⊢ {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} = {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶} |
5 | 2, 4 | eqtri 2763 | . . 3 ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶} |
6 | 1, 5 | ineq12i 4226 | . 2 ⊢ (𝐸 ∩ 𝑁) = ({𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} ∩ {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶}) |
7 | rabnc 4397 | . 2 ⊢ ({𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} ∩ {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶}) = ∅ | |
8 | 6, 7 | eqtri 2763 | 1 ⊢ (𝐸 ∩ 𝑁) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 {crab 3433 ∩ cin 3962 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nel 3045 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-nul 4340 |
This theorem is referenced by: cusgrsizeinds 29485 vtxdginducedm1 29576 |
Copyright terms: Public domain | W3C validator |