MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneldisj Structured version   Visualization version   GIF version

Theorem elneldisj 4372
Description: The set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element are disjoint. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
elneldisj.e 𝐸 = {𝑠𝐴𝐵𝐶}
elneldisj.n 𝑁 = {𝑠𝐴𝐵𝐶}
Assertion
Ref Expression
elneldisj (𝐸𝑁) = ∅
Distinct variable group:   𝐴,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐶(𝑠)   𝐸(𝑠)   𝑁(𝑠)

Proof of Theorem elneldisj
StepHypRef Expression
1 elneldisj.e . . 3 𝐸 = {𝑠𝐴𝐵𝐶}
2 elneldisj.n . . . 4 𝑁 = {𝑠𝐴𝐵𝐶}
3 df-nel 3038 . . . . 5 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
43rabbii 3426 . . . 4 {𝑠𝐴𝐵𝐶} = {𝑠𝐴 ∣ ¬ 𝐵𝐶}
52, 4eqtri 2759 . . 3 𝑁 = {𝑠𝐴 ∣ ¬ 𝐵𝐶}
61, 5ineq12i 4198 . 2 (𝐸𝑁) = ({𝑠𝐴𝐵𝐶} ∩ {𝑠𝐴 ∣ ¬ 𝐵𝐶})
7 rabnc 4371 . 2 ({𝑠𝐴𝐵𝐶} ∩ {𝑠𝐴 ∣ ¬ 𝐵𝐶}) = ∅
86, 7eqtri 2759 1 (𝐸𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wnel 3037  {crab 3420  cin 3930  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nel 3038  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-nul 4314
This theorem is referenced by:  cusgrsizeinds  29437  vtxdginducedm1  29528
  Copyright terms: Public domain W3C validator