MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeinds Structured version   Visualization version   GIF version

Theorem cusgrsizeinds 27394
Description: Part 1 of induction step in cusgrsize 27396. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsizeinds ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem cusgrsizeinds
StepHypRef Expression
1 cusgrusgr 27361 . . . 4 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrsizeindb0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
32isfusgr 27260 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
4 fusgrfis 27272 . . . . . . 7 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
53, 4sylbir 238 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin)
65a1d 25 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin))
76ex 416 . . . 4 (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
81, 7syl 17 . . 3 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
983imp 1112 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (Edg‘𝐺) ∈ Fin)
10 eqid 2738 . . . . . . 7 {𝑒𝐸𝑁𝑒} = {𝑒𝐸𝑁𝑒}
11 cusgrsizeinds.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
1210, 11elnelun 4278 . . . . . 6 ({𝑒𝐸𝑁𝑒} ∪ 𝐹) = 𝐸
1312eqcomi 2747 . . . . 5 𝐸 = ({𝑒𝐸𝑁𝑒} ∪ 𝐹)
1413fveq2i 6677 . . . 4 (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹))
1514a1i 11 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)))
16 cusgrsizeindb0.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1716eqcomi 2747 . . . . . . 7 (Edg‘𝐺) = 𝐸
1817eleq1i 2823 . . . . . 6 ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin)
19 rabfi 8821 . . . . . 6 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2018, 19sylbi 220 . . . . 5 ((Edg‘𝐺) ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2120adantl 485 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
221anim1i 618 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2322, 3sylibr 237 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
242, 16, 11usgrfilem 27269 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2523, 24stoic3 1783 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2618, 25syl5bb 286 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin))
2726biimpa 480 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin)
2810, 11elneldisj 4277 . . . . 5 ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅
2928a1i 11 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅)
30 hashun 13835 . . . 4 (({𝑒𝐸𝑁𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
3121, 27, 29, 30syl3anc 1372 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
322, 16cusgrsizeindslem 27393 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3332adantr 484 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3433oveq1d 7185 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
3515, 31, 343eqtrd 2777 . 2 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
369, 35mpdan 687 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wnel 3038  {crab 3057  cun 3841  cin 3842  c0 4211  cfv 6339  (class class class)co 7170  Fincfn 8555  1c1 10616   + caddc 10618  cmin 10948  chash 13782  Vtxcvtx 26941  Edgcedg 26992  USGraphcusgr 27094  FinUSGraphcfusgr 27258  ComplUSGraphccusgr 27352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-oadd 8135  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-n0 11977  df-xnn0 12049  df-z 12063  df-uz 12325  df-fz 12982  df-hash 13783  df-vtx 26943  df-iedg 26944  df-edg 26993  df-uhgr 27003  df-upgr 27027  df-umgr 27028  df-uspgr 27095  df-usgr 27096  df-fusgr 27259  df-nbgr 27275  df-uvtx 27328  df-cplgr 27353  df-cusgr 27354
This theorem is referenced by:  cusgrsize2inds  27395
  Copyright terms: Public domain W3C validator