MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeinds Structured version   Visualization version   GIF version

Theorem cusgrsizeinds 29364
Description: Part 1 of induction step in cusgrsize 29366. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsizeinds ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem cusgrsizeinds
StepHypRef Expression
1 cusgrusgr 29330 . . . 4 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrsizeindb0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
32isfusgr 29229 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
4 fusgrfis 29241 . . . . . . 7 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
53, 4sylbir 235 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin)
65a1d 25 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin))
76ex 412 . . . 4 (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
81, 7syl 17 . . 3 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
983imp 1110 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (Edg‘𝐺) ∈ Fin)
10 eqid 2734 . . . . . . 7 {𝑒𝐸𝑁𝑒} = {𝑒𝐸𝑁𝑒}
11 cusgrsizeinds.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
1210, 11elnelun 4366 . . . . . 6 ({𝑒𝐸𝑁𝑒} ∪ 𝐹) = 𝐸
1312eqcomi 2743 . . . . 5 𝐸 = ({𝑒𝐸𝑁𝑒} ∪ 𝐹)
1413fveq2i 6875 . . . 4 (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹))
1514a1i 11 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)))
16 cusgrsizeindb0.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1716eqcomi 2743 . . . . . . 7 (Edg‘𝐺) = 𝐸
1817eleq1i 2824 . . . . . 6 ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin)
19 rabfi 9269 . . . . . 6 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2018, 19sylbi 217 . . . . 5 ((Edg‘𝐺) ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2120adantl 481 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
221anim1i 615 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2322, 3sylibr 234 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
242, 16, 11usgrfilem 29238 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2523, 24stoic3 1775 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2618, 25bitrid 283 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin))
2726biimpa 476 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin)
2810, 11elneldisj 4365 . . . . 5 ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅
2928a1i 11 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅)
30 hashun 14388 . . . 4 (({𝑒𝐸𝑁𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
3121, 27, 29, 30syl3anc 1372 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
322, 16cusgrsizeindslem 29363 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3332adantr 480 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3433oveq1d 7414 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
3515, 31, 343eqtrd 2773 . 2 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
369, 35mpdan 687 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wnel 3035  {crab 3413  cun 3922  cin 3923  c0 4306  cfv 6527  (class class class)co 7399  Fincfn 8953  1c1 11122   + caddc 11124  cmin 11458  chash 14336  Vtxcvtx 28907  Edgcedg 28958  USGraphcusgr 29060  FinUSGraphcfusgr 29227  ComplUSGraphccusgr 29321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-oadd 8478  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9907  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-n0 12494  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13514  df-hash 14337  df-vtx 28909  df-iedg 28910  df-edg 28959  df-uhgr 28969  df-upgr 28993  df-umgr 28994  df-uspgr 29061  df-usgr 29062  df-fusgr 29228  df-nbgr 29244  df-uvtx 29297  df-cplgr 29322  df-cusgr 29323
This theorem is referenced by:  cusgrsize2inds  29365
  Copyright terms: Public domain W3C validator