MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeinds Structured version   Visualization version   GIF version

Theorem cusgrsizeinds 29424
Description: Part 1 of induction step in cusgrsize 29426. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsizeinds ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem cusgrsizeinds
StepHypRef Expression
1 cusgrusgr 29390 . . . 4 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrsizeindb0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
32isfusgr 29289 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
4 fusgrfis 29301 . . . . . . 7 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
53, 4sylbir 235 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin)
65a1d 25 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin))
76ex 412 . . . 4 (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
81, 7syl 17 . . 3 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
983imp 1110 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (Edg‘𝐺) ∈ Fin)
10 eqid 2730 . . . . . . 7 {𝑒𝐸𝑁𝑒} = {𝑒𝐸𝑁𝑒}
11 cusgrsizeinds.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
1210, 11elnelun 4341 . . . . . 6 ({𝑒𝐸𝑁𝑒} ∪ 𝐹) = 𝐸
1312eqcomi 2739 . . . . 5 𝐸 = ({𝑒𝐸𝑁𝑒} ∪ 𝐹)
1413fveq2i 6820 . . . 4 (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹))
1514a1i 11 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)))
16 cusgrsizeindb0.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1716eqcomi 2739 . . . . . . 7 (Edg‘𝐺) = 𝐸
1817eleq1i 2820 . . . . . 6 ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin)
19 rabfi 9150 . . . . . 6 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2018, 19sylbi 217 . . . . 5 ((Edg‘𝐺) ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2120adantl 481 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
221anim1i 615 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2322, 3sylibr 234 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
242, 16, 11usgrfilem 29298 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2523, 24stoic3 1777 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2618, 25bitrid 283 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin))
2726biimpa 476 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin)
2810, 11elneldisj 4340 . . . . 5 ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅
2928a1i 11 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅)
30 hashun 14281 . . . 4 (({𝑒𝐸𝑁𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
3121, 27, 29, 30syl3anc 1373 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
322, 16cusgrsizeindslem 29423 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3332adantr 480 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3433oveq1d 7356 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
3515, 31, 343eqtrd 2769 . 2 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
369, 35mpdan 687 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wnel 3030  {crab 3393  cun 3898  cin 3899  c0 4281  cfv 6477  (class class class)co 7341  Fincfn 8864  1c1 10999   + caddc 11001  cmin 11336  chash 14229  Vtxcvtx 28967  Edgcedg 29018  USGraphcusgr 29120  FinUSGraphcfusgr 29287  ComplUSGraphccusgr 29381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-hash 14230  df-vtx 28969  df-iedg 28970  df-edg 29019  df-uhgr 29029  df-upgr 29053  df-umgr 29054  df-uspgr 29121  df-usgr 29122  df-fusgr 29288  df-nbgr 29304  df-uvtx 29357  df-cplgr 29382  df-cusgr 29383
This theorem is referenced by:  cusgrsize2inds  29425
  Copyright terms: Public domain W3C validator