![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrsizeinds | Structured version Visualization version GIF version |
Description: Part 1 of induction step in cusgrsize 29490. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) |
cusgrsizeinds.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
cusgrsizeinds | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrusgr 29454 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
2 | cusgrsizeindb0.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | isfusgr 29353 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
4 | fusgrfis 29365 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
5 | 3, 4 | sylbir 235 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin)) |
7 | 6 | ex 412 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin))) |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin))) |
9 | 8 | 3imp 1111 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (Edg‘𝐺) ∈ Fin) |
10 | eqid 2740 | . . . . . . 7 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
11 | cusgrsizeinds.f | . . . . . . 7 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
12 | 10, 11 | elnelun 4416 | . . . . . 6 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) = 𝐸 |
13 | 12 | eqcomi 2749 | . . . . 5 ⊢ 𝐸 = ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) |
14 | 13 | fveq2i 6923 | . . . 4 ⊢ (♯‘𝐸) = (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) |
15 | 14 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹))) |
16 | cusgrsizeindb0.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
17 | 16 | eqcomi 2749 | . . . . . . 7 ⊢ (Edg‘𝐺) = 𝐸 |
18 | 17 | eleq1i 2835 | . . . . . 6 ⊢ ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin) |
19 | rabfi 9331 | . . . . . 6 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
20 | 18, 19 | sylbi 217 | . . . . 5 ⊢ ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
21 | 20 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
22 | 1 | anim1i 614 | . . . . . . . 8 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
23 | 22, 3 | sylibr 234 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
24 | 2, 16, 11 | usgrfilem 29362 | . . . . . . 7 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
25 | 23, 24 | stoic3 1774 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
26 | 18, 25 | bitrid 283 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin)) |
27 | 26 | biimpa 476 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin) |
28 | 10, 11 | elneldisj 4415 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅ |
29 | 28 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅) |
30 | hashun 14431 | . . . 4 ⊢ (({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹))) | |
31 | 21, 27, 29, 30 | syl3anc 1371 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹))) |
32 | 2, 16 | cusgrsizeindslem 29487 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
33 | 32 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
34 | 33 | oveq1d 7463 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
35 | 15, 31, 34 | 3eqtrd 2784 | . 2 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
36 | 9, 35 | mpdan 686 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 {crab 3443 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 1c1 11185 + caddc 11187 − cmin 11520 ♯chash 14379 Vtxcvtx 29031 Edgcedg 29082 USGraphcusgr 29184 FinUSGraphcfusgr 29351 ComplUSGraphccusgr 29445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-vtx 29033 df-iedg 29034 df-edg 29083 df-uhgr 29093 df-upgr 29117 df-umgr 29118 df-uspgr 29185 df-usgr 29186 df-fusgr 29352 df-nbgr 29368 df-uvtx 29421 df-cplgr 29446 df-cusgr 29447 |
This theorem is referenced by: cusgrsize2inds 29489 |
Copyright terms: Public domain | W3C validator |