MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeinds Structured version   Visualization version   GIF version

Theorem cusgrsizeinds 29253
Description: Part 1 of induction step in cusgrsize 29255. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsizeinds ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem cusgrsizeinds
StepHypRef Expression
1 cusgrusgr 29219 . . . 4 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrsizeindb0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
32isfusgr 29118 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
4 fusgrfis 29130 . . . . . . 7 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
53, 4sylbir 234 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin)
65a1d 25 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin))
76ex 412 . . . 4 (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
81, 7syl 17 . . 3 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
983imp 1109 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (Edg‘𝐺) ∈ Fin)
10 eqid 2727 . . . . . . 7 {𝑒𝐸𝑁𝑒} = {𝑒𝐸𝑁𝑒}
11 cusgrsizeinds.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
1210, 11elnelun 4385 . . . . . 6 ({𝑒𝐸𝑁𝑒} ∪ 𝐹) = 𝐸
1312eqcomi 2736 . . . . 5 𝐸 = ({𝑒𝐸𝑁𝑒} ∪ 𝐹)
1413fveq2i 6894 . . . 4 (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹))
1514a1i 11 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)))
16 cusgrsizeindb0.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1716eqcomi 2736 . . . . . . 7 (Edg‘𝐺) = 𝐸
1817eleq1i 2819 . . . . . 6 ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin)
19 rabfi 9285 . . . . . 6 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2018, 19sylbi 216 . . . . 5 ((Edg‘𝐺) ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2120adantl 481 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
221anim1i 614 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2322, 3sylibr 233 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
242, 16, 11usgrfilem 29127 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2523, 24stoic3 1771 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2618, 25bitrid 283 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin))
2726biimpa 476 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin)
2810, 11elneldisj 4384 . . . . 5 ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅
2928a1i 11 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅)
30 hashun 14365 . . . 4 (({𝑒𝐸𝑁𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
3121, 27, 29, 30syl3anc 1369 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
322, 16cusgrsizeindslem 29252 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3332adantr 480 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3433oveq1d 7429 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
3515, 31, 343eqtrd 2771 . 2 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
369, 35mpdan 686 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wnel 3041  {crab 3427  cun 3942  cin 3943  c0 4318  cfv 6542  (class class class)co 7414  Fincfn 8955  1c1 11131   + caddc 11133  cmin 11466  chash 14313  Vtxcvtx 28796  Edgcedg 28847  USGraphcusgr 28949  FinUSGraphcfusgr 29116  ComplUSGraphccusgr 29210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13509  df-hash 14314  df-vtx 28798  df-iedg 28799  df-edg 28848  df-uhgr 28858  df-upgr 28882  df-umgr 28883  df-uspgr 28950  df-usgr 28951  df-fusgr 29117  df-nbgr 29133  df-uvtx 29186  df-cplgr 29211  df-cusgr 29212
This theorem is referenced by:  cusgrsize2inds  29254
  Copyright terms: Public domain W3C validator