|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cusgrsizeinds | Structured version Visualization version GIF version | ||
| Description: Part 1 of induction step in cusgrsize 29472. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| cusgrsizeinds.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | 
| Ref | Expression | 
|---|---|
| cusgrsizeinds | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cusgrusgr 29436 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 2 | cusgrsizeindb0.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | isfusgr 29335 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) | 
| 4 | fusgrfis 29347 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
| 5 | 3, 4 | sylbir 235 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin) | 
| 6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin)) | 
| 7 | 6 | ex 412 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin))) | 
| 8 | 1, 7 | syl 17 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin))) | 
| 9 | 8 | 3imp 1111 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (Edg‘𝐺) ∈ Fin) | 
| 10 | eqid 2737 | . . . . . . 7 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
| 11 | cusgrsizeinds.f | . . . . . . 7 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 12 | 10, 11 | elnelun 4393 | . . . . . 6 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) = 𝐸 | 
| 13 | 12 | eqcomi 2746 | . . . . 5 ⊢ 𝐸 = ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) | 
| 14 | 13 | fveq2i 6909 | . . . 4 ⊢ (♯‘𝐸) = (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) | 
| 15 | 14 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹))) | 
| 16 | cusgrsizeindb0.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
| 17 | 16 | eqcomi 2746 | . . . . . . 7 ⊢ (Edg‘𝐺) = 𝐸 | 
| 18 | 17 | eleq1i 2832 | . . . . . 6 ⊢ ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin) | 
| 19 | rabfi 9303 | . . . . . 6 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
| 20 | 18, 19 | sylbi 217 | . . . . 5 ⊢ ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | 
| 21 | 20 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | 
| 22 | 1 | anim1i 615 | . . . . . . . 8 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) | 
| 23 | 22, 3 | sylibr 234 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) | 
| 24 | 2, 16, 11 | usgrfilem 29344 | . . . . . . 7 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) | 
| 25 | 23, 24 | stoic3 1776 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) | 
| 26 | 18, 25 | bitrid 283 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin)) | 
| 27 | 26 | biimpa 476 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin) | 
| 28 | 10, 11 | elneldisj 4392 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅ | 
| 29 | 28 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅) | 
| 30 | hashun 14421 | . . . 4 ⊢ (({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹))) | |
| 31 | 21, 27, 29, 30 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹))) | 
| 32 | 2, 16 | cusgrsizeindslem 29469 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) | 
| 33 | 32 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) | 
| 34 | 33 | oveq1d 7446 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | 
| 35 | 15, 31, 34 | 3eqtrd 2781 | . 2 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | 
| 36 | 9, 35 | mpdan 687 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∉ wnel 3046 {crab 3436 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 1c1 11156 + caddc 11158 − cmin 11492 ♯chash 14369 Vtxcvtx 29013 Edgcedg 29064 USGraphcusgr 29166 FinUSGraphcfusgr 29333 ComplUSGraphccusgr 29427 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-vtx 29015 df-iedg 29016 df-edg 29065 df-uhgr 29075 df-upgr 29099 df-umgr 29100 df-uspgr 29167 df-usgr 29168 df-fusgr 29334 df-nbgr 29350 df-uvtx 29403 df-cplgr 29428 df-cusgr 29429 | 
| This theorem is referenced by: cusgrsize2inds 29471 | 
| Copyright terms: Public domain | W3C validator |