MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeinds Structured version   Visualization version   GIF version

Theorem cusgrsizeinds 29386
Description: Part 1 of induction step in cusgrsize 29388. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
cusgrsizeinds.f 𝐹 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
cusgrsizeinds ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hint:   𝐹(𝑒)

Proof of Theorem cusgrsizeinds
StepHypRef Expression
1 cusgrusgr 29352 . . . 4 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrsizeindb0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
32isfusgr 29251 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
4 fusgrfis 29263 . . . . . . 7 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
53, 4sylbir 235 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin)
65a1d 25 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin))
76ex 412 . . . 4 (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
81, 7syl 17 . . 3 (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁𝑉 → (Edg‘𝐺) ∈ Fin)))
983imp 1110 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (Edg‘𝐺) ∈ Fin)
10 eqid 2730 . . . . . . 7 {𝑒𝐸𝑁𝑒} = {𝑒𝐸𝑁𝑒}
11 cusgrsizeinds.f . . . . . . 7 𝐹 = {𝑒𝐸𝑁𝑒}
1210, 11elnelun 4358 . . . . . 6 ({𝑒𝐸𝑁𝑒} ∪ 𝐹) = 𝐸
1312eqcomi 2739 . . . . 5 𝐸 = ({𝑒𝐸𝑁𝑒} ∪ 𝐹)
1413fveq2i 6863 . . . 4 (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹))
1514a1i 11 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)))
16 cusgrsizeindb0.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1716eqcomi 2739 . . . . . . 7 (Edg‘𝐺) = 𝐸
1817eleq1i 2820 . . . . . 6 ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin)
19 rabfi 9220 . . . . . 6 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2018, 19sylbi 217 . . . . 5 ((Edg‘𝐺) ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2120adantl 481 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
221anim1i 615 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2322, 3sylibr 234 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
242, 16, 11usgrfilem 29260 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2523, 24stoic3 1776 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin))
2618, 25bitrid 283 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin))
2726biimpa 476 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin)
2810, 11elneldisj 4357 . . . . 5 ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅
2928a1i 11 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅)
30 hashun 14353 . . . 4 (({𝑒𝐸𝑁𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒𝐸𝑁𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
3121, 27, 29, 30syl3anc 1373 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒𝐸𝑁𝑒} ∪ 𝐹)) = ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)))
322, 16cusgrsizeindslem 29385 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3332adantr 480 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
3433oveq1d 7404 . . 3 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒𝐸𝑁𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
3515, 31, 343eqtrd 2769 . 2 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
369, 35mpdan 687 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3030  {crab 3408  cun 3914  cin 3915  c0 4298  cfv 6513  (class class class)co 7389  Fincfn 8920  1c1 11075   + caddc 11077  cmin 11411  chash 14301  Vtxcvtx 28929  Edgcedg 28980  USGraphcusgr 29082  FinUSGraphcfusgr 29249  ComplUSGraphccusgr 29343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-xnn0 12522  df-z 12536  df-uz 12800  df-fz 13475  df-hash 14302  df-vtx 28931  df-iedg 28932  df-edg 28981  df-uhgr 28991  df-upgr 29015  df-umgr 29016  df-uspgr 29083  df-usgr 29084  df-fusgr 29250  df-nbgr 29266  df-uvtx 29319  df-cplgr 29344  df-cusgr 29345
This theorem is referenced by:  cusgrsize2inds  29387
  Copyright terms: Public domain W3C validator