Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrsizeinds | Structured version Visualization version GIF version |
Description: Part 1 of induction step in cusgrsize 27396. The size of a complete simple graph with 𝑛 vertices is (𝑛 − 1) plus the size of the complete graph reduced by one vertex. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) |
cusgrsizeinds.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
Ref | Expression |
---|---|
cusgrsizeinds | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrusgr 27361 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
2 | cusgrsizeindb0.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | isfusgr 27260 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
4 | fusgrfis 27272 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
5 | 3, 4 | sylbir 238 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (Edg‘𝐺) ∈ Fin) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin) → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin)) |
7 | 6 | ex 416 | . . . 4 ⊢ (𝐺 ∈ USGraph → (𝑉 ∈ Fin → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin))) |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (𝑉 ∈ Fin → (𝑁 ∈ 𝑉 → (Edg‘𝐺) ∈ Fin))) |
9 | 8 | 3imp 1112 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (Edg‘𝐺) ∈ Fin) |
10 | eqid 2738 | . . . . . . 7 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
11 | cusgrsizeinds.f | . . . . . . 7 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
12 | 10, 11 | elnelun 4278 | . . . . . 6 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) = 𝐸 |
13 | 12 | eqcomi 2747 | . . . . 5 ⊢ 𝐸 = ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹) |
14 | 13 | fveq2i 6677 | . . . 4 ⊢ (♯‘𝐸) = (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) |
15 | 14 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹))) |
16 | cusgrsizeindb0.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
17 | 16 | eqcomi 2747 | . . . . . . 7 ⊢ (Edg‘𝐺) = 𝐸 |
18 | 17 | eleq1i 2823 | . . . . . 6 ⊢ ((Edg‘𝐺) ∈ Fin ↔ 𝐸 ∈ Fin) |
19 | rabfi 8821 | . . . . . 6 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
20 | 18, 19 | sylbi 220 | . . . . 5 ⊢ ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
21 | 20 | adantl 485 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
22 | 1 | anim1i 618 | . . . . . . . 8 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
23 | 22, 3 | sylibr 237 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
24 | 2, 16, 11 | usgrfilem 27269 | . . . . . . 7 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
25 | 23, 24 | stoic3 1783 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐸 ∈ Fin ↔ 𝐹 ∈ Fin)) |
26 | 18, 25 | syl5bb 286 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((Edg‘𝐺) ∈ Fin ↔ 𝐹 ∈ Fin)) |
27 | 26 | biimpa 480 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → 𝐹 ∈ Fin) |
28 | 10, 11 | elneldisj 4277 | . . . . 5 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅ |
29 | 28 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅) |
30 | hashun 13835 | . . . 4 ⊢ (({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin ∧ 𝐹 ∈ Fin ∧ ({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∩ 𝐹) = ∅) → (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹))) | |
31 | 21, 27, 29, 30 | syl3anc 1372 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘({𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∪ 𝐹)) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹))) |
32 | 2, 16 | cusgrsizeindslem 27393 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
33 | 32 | adantr 484 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
34 | 33 | oveq1d 7185 | . . 3 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) + (♯‘𝐹)) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
35 | 15, 31, 34 | 3eqtrd 2777 | . 2 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) ∧ (Edg‘𝐺) ∈ Fin) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
36 | 9, 35 | mpdan 687 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘𝐸) = (((♯‘𝑉) − 1) + (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∉ wnel 3038 {crab 3057 ∪ cun 3841 ∩ cin 3842 ∅c0 4211 ‘cfv 6339 (class class class)co 7170 Fincfn 8555 1c1 10616 + caddc 10618 − cmin 10948 ♯chash 13782 Vtxcvtx 26941 Edgcedg 26992 USGraphcusgr 27094 FinUSGraphcfusgr 27258 ComplUSGraphccusgr 27352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-oadd 8135 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-n0 11977 df-xnn0 12049 df-z 12063 df-uz 12325 df-fz 12982 df-hash 13783 df-vtx 26943 df-iedg 26944 df-edg 26993 df-uhgr 27003 df-upgr 27027 df-umgr 27028 df-uspgr 27095 df-usgr 27096 df-fusgr 27259 df-nbgr 27275 df-uvtx 27328 df-cplgr 27353 df-cusgr 27354 |
This theorem is referenced by: cusgrsize2inds 27395 |
Copyright terms: Public domain | W3C validator |