![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabnc | Structured version Visualization version GIF version |
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
rabnc | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab 4299 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} | |
2 | pm3.24 402 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
3 | 2 | rgenw 3057 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑) |
4 | rabeq0 4377 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑)) | |
5 | 3, 4 | mpbir 230 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2752 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∀wral 3053 {crab 3424 ∩ cin 3940 ∅c0 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-in 3948 df-nul 4316 |
This theorem is referenced by: elneldisj 4381 vtxdgoddnumeven 29304 esumrnmpt2 33585 hasheuni 33602 ddemeas 33753 ballotth 34055 jm2.22 42284 |
Copyright terms: Public domain | W3C validator |