MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabnc Structured version   Visualization version   GIF version

Theorem rabnc 4327
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 4246 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)}
2 pm3.24 404 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
32rgenw 3065 . . 3 𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑)
4 rabeq0 4324 . . 3 ({𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑))
53, 4mpbir 230 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅
61, 5eqtri 2764 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1539  wral 3061  {crab 3330  cin 3891  c0 4262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rab 3333  df-v 3439  df-dif 3895  df-in 3899  df-nul 4263
This theorem is referenced by:  elneldisj  4328  vtxdgoddnumeven  27969  esumrnmpt2  32085  hasheuni  32102  ddemeas  32253  ballotth  32553  jm2.22  41013
  Copyright terms: Public domain W3C validator