Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabnc Structured version   Visualization version   GIF version

Theorem rabnc 4340
 Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
Assertion
Ref Expression
rabnc ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabnc
StepHypRef Expression
1 inrab 4274 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)}
2 pm3.24 405 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
32rgenw 3150 . . 3 𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑)
4 rabeq0 4337 . . 3 ({𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜑))
53, 4mpbir 233 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅
61, 5eqtri 2844 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 398   = wceq 1533  ∀wral 3138  {crab 3142   ∩ cin 3934  ∅c0 4290 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3938  df-in 3942  df-nul 4291 This theorem is referenced by:  elneldisj  4341  vtxdgoddnumeven  27334  esumrnmpt2  31327  hasheuni  31344  ddemeas  31495  ballotth  31795  jm2.22  39592
 Copyright terms: Public domain W3C validator