![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabnc | Structured version Visualization version GIF version |
Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
rabnc | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inrab 4302 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} | |
2 | pm3.24 402 | . . . 4 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
3 | 2 | rgenw 3061 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑) |
4 | rabeq0 4380 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜑)) | |
5 | 3, 4 | mpbir 230 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2756 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1534 ∀wral 3057 {crab 3428 ∩ cin 3944 ∅c0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rab 3429 df-v 3472 df-dif 3948 df-in 3952 df-nul 4319 |
This theorem is referenced by: elneldisj 4384 vtxdgoddnumeven 29360 esumrnmpt2 33681 hasheuni 33698 ddemeas 33849 ballotth 34151 jm2.22 42410 |
Copyright terms: Public domain | W3C validator |