| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnelun | Structured version Visualization version GIF version | ||
| Description: The union of the set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| elneldisj.e | ⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} |
| elneldisj.n | ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} |
| Ref | Expression |
|---|---|
| elnelun | ⊢ (𝐸 ∪ 𝑁) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elneldisj.e | . . 3 ⊢ 𝐸 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} | |
| 2 | elneldisj.n | . . . 4 ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} | |
| 3 | df-nel 3036 | . . . . 5 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
| 4 | 3 | rabbii 3425 | . . . 4 ⊢ {𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶} = {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶} |
| 5 | 2, 4 | eqtri 2757 | . . 3 ⊢ 𝑁 = {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶} |
| 6 | 1, 5 | uneq12i 4146 | . 2 ⊢ (𝐸 ∪ 𝑁) = ({𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} ∪ {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶}) |
| 7 | rabxm 4370 | . 2 ⊢ 𝐴 = ({𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶} ∪ {𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶}) | |
| 8 | 6, 7 | eqtr4i 2760 | 1 ⊢ (𝐸 ∪ 𝑁) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 ∉ wnel 3035 {crab 3419 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nel 3036 df-ral 3051 df-rab 3420 df-v 3465 df-un 3936 |
| This theorem is referenced by: usgrfilem 29272 cusgrsizeinds 29398 vtxdginducedm1 29489 |
| Copyright terms: Public domain | W3C validator |