MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelun Structured version   Visualization version   GIF version

Theorem elnelun 4323
Description: The union of the set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
elneldisj.e 𝐸 = {𝑠𝐴𝐵𝐶}
elneldisj.n 𝑁 = {𝑠𝐴𝐵𝐶}
Assertion
Ref Expression
elnelun (𝐸𝑁) = 𝐴
Distinct variable group:   𝐴,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝐶(𝑠)   𝐸(𝑠)   𝑁(𝑠)

Proof of Theorem elnelun
StepHypRef Expression
1 elneldisj.e . . 3 𝐸 = {𝑠𝐴𝐵𝐶}
2 elneldisj.n . . . 4 𝑁 = {𝑠𝐴𝐵𝐶}
3 df-nel 3050 . . . . 5 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
43rabbii 3408 . . . 4 {𝑠𝐴𝐵𝐶} = {𝑠𝐴 ∣ ¬ 𝐵𝐶}
52, 4eqtri 2766 . . 3 𝑁 = {𝑠𝐴 ∣ ¬ 𝐵𝐶}
61, 5uneq12i 4095 . 2 (𝐸𝑁) = ({𝑠𝐴𝐵𝐶} ∪ {𝑠𝐴 ∣ ¬ 𝐵𝐶})
7 rabxm 4320 . 2 𝐴 = ({𝑠𝐴𝐵𝐶} ∪ {𝑠𝐴 ∣ ¬ 𝐵𝐶})
86, 7eqtr4i 2769 1 (𝐸𝑁) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  wnel 3049  {crab 3068  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rab 3073  df-v 3434  df-un 3892
This theorem is referenced by:  usgrfilem  27694  cusgrsizeinds  27819  vtxdginducedm1  27910
  Copyright terms: Public domain W3C validator