| Step | Hyp | Ref
| Expression |
| 1 | | vtxdginducedm1.j |
. . . . . . . . . . . 12
⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| 2 | | vtxdginducedm1.i |
. . . . . . . . . . . 12
⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| 3 | 1, 2 | elnelun 4368 |
. . . . . . . . . . 11
⊢ (𝐽 ∪ 𝐼) = dom 𝐸 |
| 4 | 3 | eqcomi 2744 |
. . . . . . . . . 10
⊢ dom 𝐸 = (𝐽 ∪ 𝐼) |
| 5 | 4 | rabeqi 3429 |
. . . . . . . . 9
⊢ {𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)} = {𝑘 ∈ (𝐽 ∪ 𝐼) ∣ 𝑣 ∈ (𝐸‘𝑘)} |
| 6 | | rabun2 4299 |
. . . . . . . . 9
⊢ {𝑘 ∈ (𝐽 ∪ 𝐼) ∣ 𝑣 ∈ (𝐸‘𝑘)} = ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∪ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) |
| 7 | 5, 6 | eqtri 2758 |
. . . . . . . 8
⊢ {𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)} = ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∪ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) |
| 8 | 7 | fveq2i 6879 |
. . . . . . 7
⊢
(♯‘{𝑘
∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = (♯‘({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∪ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) |
| 9 | | vtxdginducedm1.e |
. . . . . . . . . . 11
⊢ 𝐸 = (iEdg‘𝐺) |
| 10 | 9 | fvexi 6890 |
. . . . . . . . . 10
⊢ 𝐸 ∈ V |
| 11 | 10 | dmex 7905 |
. . . . . . . . 9
⊢ dom 𝐸 ∈ V |
| 12 | 1, 11 | rab2ex 5312 |
. . . . . . . 8
⊢ {𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∈ V |
| 13 | 2, 11 | rab2ex 5312 |
. . . . . . . 8
⊢ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∈ V |
| 14 | | ssrab2 4055 |
. . . . . . . . . 10
⊢ {𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ⊆ 𝐽 |
| 15 | | ssrab2 4055 |
. . . . . . . . . 10
⊢ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} ⊆ 𝐼 |
| 16 | | ss2in 4220 |
. . . . . . . . . 10
⊢ (({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ⊆ 𝐽 ∧ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} ⊆ 𝐼) → ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ⊆ (𝐽 ∩ 𝐼)) |
| 17 | 14, 15, 16 | mp2an 692 |
. . . . . . . . 9
⊢ ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ⊆ (𝐽 ∩ 𝐼) |
| 18 | 1, 2 | elneldisj 4367 |
. . . . . . . . . . 11
⊢ (𝐽 ∩ 𝐼) = ∅ |
| 19 | 18 | sseq2i 3988 |
. . . . . . . . . 10
⊢ (({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ⊆ (𝐽 ∩ 𝐼) ↔ ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ⊆ ∅) |
| 20 | | ss0 4377 |
. . . . . . . . . 10
⊢ (({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ⊆ ∅ → ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = ∅) |
| 21 | 19, 20 | sylbi 217 |
. . . . . . . . 9
⊢ (({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ⊆ (𝐽 ∩ 𝐼) → ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = ∅) |
| 22 | 17, 21 | ax-mp 5 |
. . . . . . . 8
⊢ ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = ∅ |
| 23 | | hashunx 14404 |
. . . . . . . 8
⊢ (({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∈ V ∧ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∈ V ∧ ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∩ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = ∅) → (♯‘({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∪ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) = ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}))) |
| 24 | 12, 13, 22, 23 | mp3an 1463 |
. . . . . . 7
⊢
(♯‘({𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∪ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) = ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) |
| 25 | 8, 24 | eqtri 2758 |
. . . . . 6
⊢
(♯‘{𝑘
∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) |
| 26 | 4 | rabeqi 3429 |
. . . . . . . . 9
⊢ {𝑘 ∈ dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}} = {𝑘 ∈ (𝐽 ∪ 𝐼) ∣ (𝐸‘𝑘) = {𝑣}} |
| 27 | | rabun2 4299 |
. . . . . . . . 9
⊢ {𝑘 ∈ (𝐽 ∪ 𝐼) ∣ (𝐸‘𝑘) = {𝑣}} = ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∪ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) |
| 28 | 26, 27 | eqtri 2758 |
. . . . . . . 8
⊢ {𝑘 ∈ dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}} = ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∪ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) |
| 29 | 28 | fveq2i 6879 |
. . . . . . 7
⊢
(♯‘{𝑘
∈ dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}}) = (♯‘({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∪ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) |
| 30 | 1, 11 | rab2ex 5312 |
. . . . . . . 8
⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∈ V |
| 31 | 2, 11 | rab2ex 5312 |
. . . . . . . 8
⊢ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} ∈ V |
| 32 | | ssrab2 4055 |
. . . . . . . . . 10
⊢ {𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ⊆ 𝐽 |
| 33 | | ssrab2 4055 |
. . . . . . . . . 10
⊢ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} ⊆ 𝐼 |
| 34 | | ss2in 4220 |
. . . . . . . . . 10
⊢ (({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ⊆ 𝐽 ∧ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} ⊆ 𝐼) → ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ⊆ (𝐽 ∩ 𝐼)) |
| 35 | 32, 33, 34 | mp2an 692 |
. . . . . . . . 9
⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ⊆ (𝐽 ∩ 𝐼) |
| 36 | 18 | sseq2i 3988 |
. . . . . . . . . 10
⊢ (({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ⊆ (𝐽 ∩ 𝐼) ↔ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ⊆ ∅) |
| 37 | | ss0 4377 |
. . . . . . . . . 10
⊢ (({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ⊆ ∅ → ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) = ∅) |
| 38 | 36, 37 | sylbi 217 |
. . . . . . . . 9
⊢ (({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ⊆ (𝐽 ∩ 𝐼) → ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) = ∅) |
| 39 | 35, 38 | ax-mp 5 |
. . . . . . . 8
⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) = ∅ |
| 40 | | hashunx 14404 |
. . . . . . . 8
⊢ (({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∈ V ∧ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} ∈ V ∧ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∩ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) = ∅) → (♯‘({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∪ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) = ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) |
| 41 | 30, 31, 39, 40 | mp3an 1463 |
. . . . . . 7
⊢
(♯‘({𝑘
∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∪ {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) = ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) |
| 42 | 29, 41 | eqtri 2758 |
. . . . . 6
⊢
(♯‘{𝑘
∈ dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}}) = ((♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) |
| 43 | 25, 42 | oveq12i 7417 |
. . . . 5
⊢
((♯‘{𝑘
∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}})) = (((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) +𝑒
((♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) |
| 44 | | hashxnn0 14357 |
. . . . . . . . 9
⊢ ({𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∈ V → (♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℕ0*) |
| 45 | 12, 44 | ax-mp 5 |
. . . . . . . 8
⊢
(♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℕ0* |
| 46 | 45 | a1i 11 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℕ0*) |
| 47 | | hashxnn0 14357 |
. . . . . . . . 9
⊢ ({𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} ∈ V → (♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℕ0*) |
| 48 | 13, 47 | ax-mp 5 |
. . . . . . . 8
⊢
(♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℕ0* |
| 49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℕ0*) |
| 50 | | hashxnn0 14357 |
. . . . . . . . 9
⊢ ({𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}} ∈ V → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) ∈
ℕ0*) |
| 51 | 30, 50 | ax-mp 5 |
. . . . . . . 8
⊢
(♯‘{𝑘
∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) ∈
ℕ0* |
| 52 | 51 | a1i 11 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) ∈
ℕ0*) |
| 53 | | hashxnn0 14357 |
. . . . . . . . 9
⊢ ({𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} ∈ V → (♯‘{𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ∈
ℕ0*) |
| 54 | 31, 53 | ax-mp 5 |
. . . . . . . 8
⊢
(♯‘{𝑘
∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ∈
ℕ0* |
| 55 | 54 | a1i 11 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ∈
ℕ0*) |
| 56 | 46, 49, 52, 55 | xnn0add4d 13320 |
. . . . . 6
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) +𝑒
((♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) = (((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})))) |
| 57 | | xnn0xaddcl 13251 |
. . . . . . . . . 10
⊢
(((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈ ℕ0*
∧ (♯‘{𝑘
∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) ∈ ℕ0*)
→ ((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℕ0*) |
| 58 | 45, 51, 57 | mp2an 692 |
. . . . . . . . 9
⊢
((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℕ0* |
| 59 | | xnn0xr 12579 |
. . . . . . . . 9
⊢
(((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) ∈ ℕ0*
→ ((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℝ*) |
| 60 | 58, 59 | ax-mp 5 |
. . . . . . . 8
⊢
((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℝ* |
| 61 | | xnn0xaddcl 13251 |
. . . . . . . . . 10
⊢
(((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈ ℕ0*
∧ (♯‘{𝑘
∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) ∈ ℕ0*)
→ ((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℕ0*) |
| 62 | 48, 54, 61 | mp2an 692 |
. . . . . . . . 9
⊢
((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℕ0* |
| 63 | | xnn0xr 12579 |
. . . . . . . . 9
⊢
(((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) ∈ ℕ0*
→ ((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℝ*) |
| 64 | 62, 63 | ax-mp 5 |
. . . . . . . 8
⊢
((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) ∈
ℝ* |
| 65 | | xaddcom 13256 |
. . . . . . . 8
⊢
((((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) ∈ ℝ* ∧
((♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) ∈ ℝ*) →
(((♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) = (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})))) |
| 66 | 60, 64, 65 | mp2an 692 |
. . . . . . 7
⊢
(((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) = (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}}))) |
| 67 | | vtxdginducedm1.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Vtx‘𝐺) |
| 68 | | vtxdginducedm1.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| 69 | | vtxdginducedm1.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| 70 | | vtxdginducedm1.s |
. . . . . . . . . . . 12
⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| 71 | 67, 9, 68, 2, 69, 70, 1 | vtxdginducedm1lem4 29522 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (♯‘{𝑘 ∈ 𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) = 0) |
| 72 | 71 | oveq2d 7421 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) = ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
0)) |
| 73 | | xnn0xr 12579 |
. . . . . . . . . . . 12
⊢
((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈ ℕ0*
→ (♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℝ*) |
| 74 | 45, 73 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈
ℝ* |
| 75 | | xaddrid 13257 |
. . . . . . . . . . 11
⊢
((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) ∈ ℝ* →
((♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒 0) =
(♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)})) |
| 76 | 74, 75 | ax-mp 5 |
. . . . . . . . . 10
⊢
((♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒 0) =
(♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) |
| 77 | 72, 76 | eqtrdi 2786 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) = (♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)})) |
| 78 | | fveq2 6876 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑙 → (𝐸‘𝑘) = (𝐸‘𝑙)) |
| 79 | 78 | eleq2d 2820 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑙 → (𝑣 ∈ (𝐸‘𝑘) ↔ 𝑣 ∈ (𝐸‘𝑙))) |
| 80 | 79 | cbvrabv 3426 |
. . . . . . . . . 10
⊢ {𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)} = {𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} |
| 81 | 80 | fveq2i 6879 |
. . . . . . . . 9
⊢
(♯‘{𝑘
∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) = (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) |
| 82 | 77, 81 | eqtrdi 2786 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) = (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |
| 83 | 82 | oveq2d 7421 |
. . . . . . 7
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}}))) = (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 84 | 66, 83 | eqtrid 2782 |
. . . . . 6
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
((♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) = (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 85 | 56, 84 | eqtrd 2770 |
. . . . 5
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (((♯‘{𝑘 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)})) +𝑒
((♯‘{𝑘 ∈
𝐽 ∣ (𝐸‘𝑘) = {𝑣}}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}}))) = (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 86 | 43, 85 | eqtrid 2782 |
. . . 4
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((♯‘{𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}})) = (((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 87 | 67, 9, 68, 2, 69, 70 | vtxdginducedm1lem2 29520 |
. . . . . . . . . 10
⊢ dom
(iEdg‘𝑆) = 𝐼 |
| 88 | 87 | rabeqi 3429 |
. . . . . . . . 9
⊢ {𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)} = {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)} |
| 89 | 67, 9, 68, 2, 69, 70 | vtxdginducedm1lem3 29521 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐼 → ((iEdg‘𝑆)‘𝑘) = (𝐸‘𝑘)) |
| 90 | 89 | eleq2d 2820 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐼 → (𝑣 ∈ ((iEdg‘𝑆)‘𝑘) ↔ 𝑣 ∈ (𝐸‘𝑘))) |
| 91 | 90 | rabbiia 3419 |
. . . . . . . . 9
⊢ {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)} = {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} |
| 92 | 88, 91 | eqtri 2758 |
. . . . . . . 8
⊢ {𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)} = {𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)} |
| 93 | 92 | fveq2i 6879 |
. . . . . . 7
⊢
(♯‘{𝑘
∈ dom (iEdg‘𝑆)
∣ 𝑣 ∈
((iEdg‘𝑆)‘𝑘)}) = (♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) |
| 94 | 87 | rabeqi 3429 |
. . . . . . . . 9
⊢ {𝑘 ∈ dom (iEdg‘𝑆) ∣ ((iEdg‘𝑆)‘𝑘) = {𝑣}} = {𝑘 ∈ 𝐼 ∣ ((iEdg‘𝑆)‘𝑘) = {𝑣}} |
| 95 | 89 | eqeq1d 2737 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐼 → (((iEdg‘𝑆)‘𝑘) = {𝑣} ↔ (𝐸‘𝑘) = {𝑣})) |
| 96 | 95 | rabbiia 3419 |
. . . . . . . . 9
⊢ {𝑘 ∈ 𝐼 ∣ ((iEdg‘𝑆)‘𝑘) = {𝑣}} = {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} |
| 97 | 94, 96 | eqtri 2758 |
. . . . . . . 8
⊢ {𝑘 ∈ dom (iEdg‘𝑆) ∣ ((iEdg‘𝑆)‘𝑘) = {𝑣}} = {𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}} |
| 98 | 97 | fveq2i 6879 |
. . . . . . 7
⊢
(♯‘{𝑘
∈ dom (iEdg‘𝑆)
∣ ((iEdg‘𝑆)‘𝑘) = {𝑣}}) = (♯‘{𝑘 ∈ 𝐼 ∣ (𝐸‘𝑘) = {𝑣}}) |
| 99 | 93, 98 | oveq12i 7417 |
. . . . . 6
⊢
((♯‘{𝑘
∈ dom (iEdg‘𝑆)
∣ 𝑣 ∈
((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}})) = ((♯‘{𝑘 ∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) |
| 100 | 99 | eqcomi 2744 |
. . . . 5
⊢
((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) = ((♯‘{𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}})) |
| 101 | 100 | oveq1i 7415 |
. . . 4
⊢
(((♯‘{𝑘
∈ 𝐼 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
𝐼 ∣ (𝐸‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) = (((♯‘{𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |
| 102 | 86, 101 | eqtrdi 2786 |
. . 3
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((♯‘{𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}})) = (((♯‘{𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 103 | | eldifi 4106 |
. . . 4
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝑉) |
| 104 | | eqid 2735 |
. . . . 5
⊢ dom 𝐸 = dom 𝐸 |
| 105 | 67, 9, 104 | vtxdgval 29448 |
. . . 4
⊢ (𝑣 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘{𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}}))) |
| 106 | 103, 105 | syl 17 |
. . 3
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘{𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ (𝐸‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom 𝐸 ∣ (𝐸‘𝑘) = {𝑣}}))) |
| 107 | 70 | fveq2i 6879 |
. . . . . . . 8
⊢
(Vtx‘𝑆) =
(Vtx‘〈𝐾, 𝑃〉) |
| 108 | 67 | fvexi 6890 |
. . . . . . . . . 10
⊢ 𝑉 ∈ V |
| 109 | | difexg 5299 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ V → (𝑉 ∖ {𝑁}) ∈ V) |
| 110 | 68, 109 | eqeltrid 2838 |
. . . . . . . . . 10
⊢ (𝑉 ∈ V → 𝐾 ∈ V) |
| 111 | 108, 110 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝐾 ∈ V |
| 112 | | resexg 6014 |
. . . . . . . . . . 11
⊢ (𝐸 ∈ V → (𝐸 ↾ 𝐼) ∈ V) |
| 113 | 69, 112 | eqeltrid 2838 |
. . . . . . . . . 10
⊢ (𝐸 ∈ V → 𝑃 ∈ V) |
| 114 | 10, 113 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝑃 ∈ V |
| 115 | 111, 114 | opvtxfvi 28988 |
. . . . . . . 8
⊢
(Vtx‘〈𝐾,
𝑃〉) = 𝐾 |
| 116 | 107, 115 | eqtri 2758 |
. . . . . . 7
⊢
(Vtx‘𝑆) =
𝐾 |
| 117 | 116 | eleq2i 2826 |
. . . . . 6
⊢ (𝑣 ∈ (Vtx‘𝑆) ↔ 𝑣 ∈ 𝐾) |
| 118 | 68 | eleq2i 2826 |
. . . . . 6
⊢ (𝑣 ∈ 𝐾 ↔ 𝑣 ∈ (𝑉 ∖ {𝑁})) |
| 119 | 117, 118 | sylbbr 236 |
. . . . 5
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ (Vtx‘𝑆)) |
| 120 | | eqid 2735 |
. . . . . 6
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 121 | | eqid 2735 |
. . . . . 6
⊢
(iEdg‘𝑆) =
(iEdg‘𝑆) |
| 122 | | eqid 2735 |
. . . . . 6
⊢ dom
(iEdg‘𝑆) = dom
(iEdg‘𝑆) |
| 123 | 120, 121,
122 | vtxdgval 29448 |
. . . . 5
⊢ (𝑣 ∈ (Vtx‘𝑆) → ((VtxDeg‘𝑆)‘𝑣) = ((♯‘{𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}}))) |
| 124 | 119, 123 | syl 17 |
. . . 4
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((VtxDeg‘𝑆)‘𝑣) = ((♯‘{𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}}))) |
| 125 | 124 | oveq1d 7420 |
. . 3
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) = (((♯‘{𝑘 ∈ dom (iEdg‘𝑆) ∣ 𝑣 ∈ ((iEdg‘𝑆)‘𝑘)}) +𝑒
(♯‘{𝑘 ∈
dom (iEdg‘𝑆) ∣
((iEdg‘𝑆)‘𝑘) = {𝑣}})) +𝑒
(♯‘{𝑙 ∈
𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 126 | 102, 106,
125 | 3eqtr4d 2780 |
. 2
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 127 | 126 | rgen 3053 |
1
⊢
∀𝑣 ∈
(𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |