![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elni | Structured version Visualization version GIF version |
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ni 10871 | . . 3 ⊢ N = (ω ∖ {∅}) | |
2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
3 | eldifsn 4791 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ≠ wne 2938 ∖ cdif 3946 ∅c0 4323 {csn 4629 ωcom 7859 Ncnpi 10843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-dif 3952 df-sn 4630 df-ni 10871 |
This theorem is referenced by: elni2 10876 0npi 10881 1pi 10882 addclpi 10891 mulclpi 10892 nlt1pi 10905 indpi 10906 |
Copyright terms: Public domain | W3C validator |