MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni Structured version   Visualization version   GIF version

Theorem elni 10762
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 10758 . . 3 N = (ω ∖ {∅})
21eleq2i 2823 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 4733 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 275 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wne 2928  cdif 3894  c0 4278  {csn 4571  ωcom 7791  Ncnpi 10730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-sn 4572  df-ni 10758
This theorem is referenced by:  elni2  10763  0npi  10768  1pi  10769  addclpi  10778  mulclpi  10779  nlt1pi  10792  indpi  10793
  Copyright terms: Public domain W3C validator