MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni Structured version   Visualization version   GIF version

Theorem elni 10829
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 10825 . . 3 N = (ω ∖ {∅})
21eleq2i 2820 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 4750 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 275 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wne 2925  cdif 3911  c0 4296  {csn 4589  ωcom 7842  Ncnpi 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-sn 4590  df-ni 10825
This theorem is referenced by:  elni2  10830  0npi  10835  1pi  10836  addclpi  10845  mulclpi  10846  nlt1pi  10859  indpi  10860
  Copyright terms: Public domain W3C validator