| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elni | Structured version Visualization version GIF version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elni | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ni 10758 | . . 3 ⊢ N = (ω ∖ {∅}) | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ N ↔ 𝐴 ∈ (ω ∖ {∅})) |
| 3 | eldifsn 4733 | . 2 ⊢ (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ∅c0 4278 {csn 4571 ωcom 7791 Ncnpi 10730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-sn 4572 df-ni 10758 |
| This theorem is referenced by: elni2 10763 0npi 10768 1pi 10769 addclpi 10778 mulclpi 10779 nlt1pi 10792 indpi 10793 |
| Copyright terms: Public domain | W3C validator |