MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni Structured version   Visualization version   GIF version

Theorem elni 10945
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 10941 . . 3 N = (ω ∖ {∅})
21eleq2i 2836 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 4811 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 275 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wne 2946  cdif 3973  c0 4352  {csn 4648  ωcom 7903  Ncnpi 10913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-sn 4649  df-ni 10941
This theorem is referenced by:  elni2  10946  0npi  10951  1pi  10952  addclpi  10961  mulclpi  10962  nlt1pi  10975  indpi  10976
  Copyright terms: Public domain W3C validator