MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni Structured version   Visualization version   GIF version

Theorem elni 10875
Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))

Proof of Theorem elni
StepHypRef Expression
1 df-ni 10871 . . 3 N = (ω ∖ {∅})
21eleq2i 2823 . 2 (𝐴N𝐴 ∈ (ω ∖ {∅}))
3 eldifsn 4791 . 2 (𝐴 ∈ (ω ∖ {∅}) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
42, 3bitri 274 1 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2104  wne 2938  cdif 3946  c0 4323  {csn 4629  ωcom 7859  Ncnpi 10843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-v 3474  df-dif 3952  df-sn 4630  df-ni 10871
This theorem is referenced by:  elni2  10876  0npi  10881  1pi  10882  addclpi  10891  mulclpi  10892  nlt1pi  10905  indpi  10906
  Copyright terms: Public domain W3C validator