![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elni2 | Structured version Visualization version GIF version |
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elni2 | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elni 9898 | . 2 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
2 | nnord 7218 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
3 | ord0eln0 5920 | . . . 4 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
5 | 4 | pm5.32i 564 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
6 | 1, 5 | bitr4i 267 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 Ord word 5863 ωcom 7210 Ncnpi 9866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-tr 4887 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-om 7211 df-ni 9894 |
This theorem is referenced by: addclpi 9914 mulclpi 9915 mulcanpi 9922 addnidpi 9923 ltexpi 9924 ltmpi 9926 indpi 9929 |
Copyright terms: Public domain | W3C validator |