| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elni2 | Structured version Visualization version GIF version | ||
| Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elni2 | ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elni 10890 | . 2 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
| 2 | nnord 7869 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 3 | ord0eln0 6408 | . . . 4 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ ω → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 5 | 4 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 Ord word 6351 ωcom 7861 Ncnpi 10858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-om 7862 df-ni 10886 |
| This theorem is referenced by: addclpi 10906 mulclpi 10907 mulcanpi 10914 addnidpi 10915 ltexpi 10916 ltmpi 10918 indpi 10921 |
| Copyright terms: Public domain | W3C validator |