MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni2 Structured version   Visualization version   GIF version

Theorem elni2 10768
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 elni 10767 . 2 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2 nnord 7804 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
3 ord0eln0 6362 . . . 4 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . 3 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))
54pm5.32i 574 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
61, 5bitr4i 278 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  wne 2928  c0 4280  Ord word 6305  ωcom 7796  Ncnpi 10735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-om 7797  df-ni 10763
This theorem is referenced by:  addclpi  10783  mulclpi  10784  mulcanpi  10791  addnidpi  10792  ltexpi  10793  ltmpi  10795  indpi  10798
  Copyright terms: Public domain W3C validator