MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni2 Structured version   Visualization version   GIF version

Theorem elni2 10868
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 elni 10867 . 2 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2 nnord 7859 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
3 ord0eln0 6416 . . . 4 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . 3 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))
54pm5.32i 575 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
61, 5bitr4i 277 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wne 2940  c0 4321  Ord word 6360  ωcom 7851  Ncnpi 10835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-om 7852  df-ni 10863
This theorem is referenced by:  addclpi  10883  mulclpi  10884  mulcanpi  10891  addnidpi  10892  ltexpi  10893  ltmpi  10895  indpi  10898
  Copyright terms: Public domain W3C validator