![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addclpi | Structured version Visualization version GIF version |
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addpiord 10922 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
2 | pinn 10916 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 10916 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnacl 8648 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | |
5 | 3, 4 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ ω) |
6 | elni2 10915 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | nnaordi 8655 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
8 | ne0i 4347 | . . . . . . . 8 ⊢ ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅) | |
9 | 7, 8 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅)) |
10 | 9 | expcom 413 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅))) |
11 | 10 | imp32 418 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +o 𝐵) ≠ ∅) |
12 | 6, 11 | sylan2b 594 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ≠ ∅) |
13 | elni 10914 | . . . 4 ⊢ ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 +o 𝐵) ≠ ∅)) | |
14 | 5, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
15 | 2, 14 | sylan 580 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
16 | 1, 15 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 (class class class)co 7431 ωcom 7887 +o coa 8502 Ncnpi 10882 +N cpli 10883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-oadd 8509 df-ni 10910 df-pli 10911 |
This theorem is referenced by: addasspi 10933 distrpi 10936 addcanpi 10937 ltapi 10941 1lt2pi 10943 indpi 10945 addpqf 10982 adderpqlem 10992 addassnq 10996 distrnq 10999 1lt2nq 11011 archnq 11018 prlem934 11071 |
Copyright terms: Public domain | W3C validator |