MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpi Structured version   Visualization version   GIF version

Theorem addclpi 10805
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclpi ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)

Proof of Theorem addclpi
StepHypRef Expression
1 addpiord 10797 . 2 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
2 pinn 10791 . . 3 (𝐴N𝐴 ∈ ω)
3 pinn 10791 . . . . 5 (𝐵N𝐵 ∈ ω)
4 nnacl 8536 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
53, 4sylan2 593 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ ω)
6 elni2 10790 . . . . 5 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
7 nnaordi 8543 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
8 ne0i 4294 . . . . . . . 8 ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
97, 8syl6 35 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅))
109expcom 413 . . . . . 6 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅)))
1110imp32 418 . . . . 5 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +o 𝐵) ≠ ∅)
126, 11sylan2b 594 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ≠ ∅)
13 elni 10789 . . . 4 ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 +o 𝐵) ≠ ∅))
145, 12, 13sylanbrc 583 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ N)
152, 14sylan 580 . 2 ((𝐴N𝐵N) → (𝐴 +o 𝐵) ∈ N)
161, 15eqeltrd 2828 1 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  c0 4286  (class class class)co 7353  ωcom 7806   +o coa 8392  Ncnpi 10757   +N cpli 10758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-ni 10785  df-pli 10786
This theorem is referenced by:  addasspi  10808  distrpi  10811  addcanpi  10812  ltapi  10816  1lt2pi  10818  indpi  10820  addpqf  10857  adderpqlem  10867  addassnq  10871  distrnq  10874  1lt2nq  10886  archnq  10893  prlem934  10946
  Copyright terms: Public domain W3C validator