Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addclpi | Structured version Visualization version GIF version |
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addpiord 10686 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
2 | pinn 10680 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 10680 | . . . . 5 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnacl 8473 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | |
5 | 3, 4 | sylan2 594 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ ω) |
6 | elni2 10679 | . . . . 5 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | nnaordi 8480 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵))) | |
8 | ne0i 4274 | . . . . . . . 8 ⊢ ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅) | |
9 | 7, 8 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅)) |
10 | 9 | expcom 415 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅))) |
11 | 10 | imp32 420 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +o 𝐵) ≠ ∅) |
12 | 6, 11 | sylan2b 595 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ≠ ∅) |
13 | elni 10678 | . . . 4 ⊢ ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 +o 𝐵) ≠ ∅)) | |
14 | 5, 12, 13 | sylanbrc 584 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
15 | 2, 14 | sylan 581 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) ∈ N) |
16 | 1, 15 | eqeltrd 2837 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ≠ wne 2941 ∅c0 4262 (class class class)co 7307 ωcom 7744 +o coa 8325 Ncnpi 10646 +N cpli 10647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-oadd 8332 df-ni 10674 df-pli 10675 |
This theorem is referenced by: addasspi 10697 distrpi 10700 addcanpi 10701 ltapi 10705 1lt2pi 10707 indpi 10709 addpqf 10746 adderpqlem 10756 addassnq 10760 distrnq 10763 1lt2nq 10775 archnq 10782 prlem934 10835 |
Copyright terms: Public domain | W3C validator |