MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclpi Structured version   Visualization version   GIF version

Theorem addclpi 10793
Description: Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addclpi ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)

Proof of Theorem addclpi
StepHypRef Expression
1 addpiord 10785 . 2 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
2 pinn 10779 . . 3 (𝐴N𝐴 ∈ ω)
3 pinn 10779 . . . . 5 (𝐵N𝐵 ∈ ω)
4 nnacl 8535 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
53, 4sylan2 593 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ ω)
6 elni2 10778 . . . . 5 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
7 nnaordi 8542 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
8 ne0i 4292 . . . . . . . 8 ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) → (𝐴 +o 𝐵) ≠ ∅)
97, 8syl6 35 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅))
109expcom 413 . . . . . 6 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → (𝐴 +o 𝐵) ≠ ∅)))
1110imp32 418 . . . . 5 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → (𝐴 +o 𝐵) ≠ ∅)
126, 11sylan2b 594 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ≠ ∅)
13 elni 10777 . . . 4 ((𝐴 +o 𝐵) ∈ N ↔ ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 +o 𝐵) ≠ ∅))
145, 12, 13sylanbrc 583 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → (𝐴 +o 𝐵) ∈ N)
152, 14sylan 580 . 2 ((𝐴N𝐵N) → (𝐴 +o 𝐵) ∈ N)
161, 15eqeltrd 2833 1 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wne 2930  c0 4284  (class class class)co 7355  ωcom 7805   +o coa 8391  Ncnpi 10745   +N cpli 10746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-oadd 8398  df-ni 10773  df-pli 10774
This theorem is referenced by:  addasspi  10796  distrpi  10799  addcanpi  10800  ltapi  10804  1lt2pi  10806  indpi  10808  addpqf  10845  adderpqlem  10855  addassnq  10859  distrnq  10862  1lt2nq  10874  archnq  10881  prlem934  10934
  Copyright terms: Public domain W3C validator