MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpi Structured version   Visualization version   GIF version

Theorem mulclpi 10791
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 10783 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 10776 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 10776 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 8533 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 596 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 10775 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 496 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 481 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 481 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 480 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 10775 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 496 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 480 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 8552 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 837 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 15 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
1716ne0d 4291 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
18 elni 10774 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
195, 17, 18sylanbrc 583 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
201, 19eqeltrd 2833 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wne 2929  c0 4282  (class class class)co 7352  ωcom 7802   ·o comu 8389  Ncnpi 10742   ·N cmi 10744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395  df-omul 8396  df-ni 10770  df-mi 10772
This theorem is referenced by:  mulasspi  10795  distrpi  10796  mulcanpi  10798  ltmpi  10802  enqer  10819  addpqf  10842  mulpqf  10844  adderpqlem  10852  mulerpqlem  10853  addassnq  10856  mulassnq  10857  mulcanenq  10858  distrnq  10859  recmulnq  10862  ltsonq  10867  lterpq  10868  ltanq  10869  ltmnq  10870  ltexnq  10873  archnq  10878
  Copyright terms: Public domain W3C validator