Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulclpi | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulclpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpiord 10625 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
2 | pinn 10618 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
3 | pinn 10618 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
4 | nnmcl 8419 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | |
5 | 2, 3, 4 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ ω) |
6 | elni2 10617 | . . . . . . 7 ⊢ (𝐵 ∈ N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) | |
7 | 6 | simprbi 496 | . . . . . 6 ⊢ (𝐵 ∈ N → ∅ ∈ 𝐵) |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐵) |
9 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ ω) |
10 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ ω) |
11 | elni2 10617 | . . . . . . . 8 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | |
12 | 11 | simprbi 496 | . . . . . . 7 ⊢ (𝐴 ∈ N → ∅ ∈ 𝐴) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ∅ ∈ 𝐴) |
14 | nnmordi 8438 | . . . . . 6 ⊢ (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) | |
15 | 9, 10, 13, 14 | syl21anc 834 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))) |
16 | 8, 15 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)) |
17 | 16 | ne0d 4274 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ≠ ∅) |
18 | elni 10616 | . . 3 ⊢ ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅)) | |
19 | 5, 17, 18 | sylanbrc 582 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) ∈ N) |
20 | 1, 19 | eqeltrd 2840 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2944 ∅c0 4261 (class class class)co 7268 ωcom 7700 ·o comu 8279 Ncnpi 10584 ·N cmi 10586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-oadd 8285 df-omul 8286 df-ni 10612 df-mi 10614 |
This theorem is referenced by: mulasspi 10637 distrpi 10638 mulcanpi 10640 ltmpi 10644 enqer 10661 addpqf 10684 mulpqf 10686 adderpqlem 10694 mulerpqlem 10695 addassnq 10698 mulassnq 10699 mulcanenq 10700 distrnq 10701 recmulnq 10704 ltsonq 10709 lterpq 10710 ltanq 10711 ltmnq 10712 ltexnq 10715 archnq 10720 |
Copyright terms: Public domain | W3C validator |