MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpi Structured version   Visualization version   GIF version

Theorem mulclpi 10806
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 10798 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 10791 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 10791 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 8537 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 596 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 10790 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 496 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 481 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 481 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 480 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 10790 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 496 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 480 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 8556 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 837 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 15 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
1716ne0d 4295 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
18 elni 10789 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
195, 17, 18sylanbrc 583 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
201, 19eqeltrd 2828 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  c0 4286  (class class class)co 7353  ωcom 7806   ·o comu 8393  Ncnpi 10757   ·N cmi 10759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399  df-omul 8400  df-ni 10785  df-mi 10787
This theorem is referenced by:  mulasspi  10810  distrpi  10811  mulcanpi  10813  ltmpi  10817  enqer  10834  addpqf  10857  mulpqf  10859  adderpqlem  10867  mulerpqlem  10868  addassnq  10871  mulassnq  10872  mulcanenq  10873  distrnq  10874  recmulnq  10877  ltsonq  10882  lterpq  10883  ltanq  10884  ltmnq  10885  ltexnq  10888  archnq  10893
  Copyright terms: Public domain W3C validator