MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpi Structured version   Visualization version   GIF version

Theorem mulclpi 10912
Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpi ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)

Proof of Theorem mulclpi
StepHypRef Expression
1 mulpiord 10904 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
2 pinn 10897 . . . 4 (𝐴N𝐴 ∈ ω)
3 pinn 10897 . . . 4 (𝐵N𝐵 ∈ ω)
4 nnmcl 8629 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω)
52, 3, 4syl2an 596 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ ω)
6 elni2 10896 . . . . . . 7 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
76simprbi 496 . . . . . 6 (𝐵N → ∅ ∈ 𝐵)
87adantl 481 . . . . 5 ((𝐴N𝐵N) → ∅ ∈ 𝐵)
93adantl 481 . . . . . 6 ((𝐴N𝐵N) → 𝐵 ∈ ω)
102adantr 480 . . . . . 6 ((𝐴N𝐵N) → 𝐴 ∈ ω)
11 elni2 10896 . . . . . . . 8 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
1211simprbi 496 . . . . . . 7 (𝐴N → ∅ ∈ 𝐴)
1312adantr 480 . . . . . 6 ((𝐴N𝐵N) → ∅ ∈ 𝐴)
14 nnmordi 8648 . . . . . 6 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
159, 10, 13, 14syl21anc 837 . . . . 5 ((𝐴N𝐵N) → (∅ ∈ 𝐵 → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵)))
168, 15mpd 15 . . . 4 ((𝐴N𝐵N) → (𝐴 ·o ∅) ∈ (𝐴 ·o 𝐵))
1716ne0d 4322 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ≠ ∅)
18 elni 10895 . . 3 ((𝐴 ·o 𝐵) ∈ N ↔ ((𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ≠ ∅))
195, 17, 18sylanbrc 583 . 2 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) ∈ N)
201, 19eqeltrd 2835 1 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2933  c0 4313  (class class class)co 7410  ωcom 7866   ·o comu 8483  Ncnpi 10863   ·N cmi 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-omul 8490  df-ni 10891  df-mi 10893
This theorem is referenced by:  mulasspi  10916  distrpi  10917  mulcanpi  10919  ltmpi  10923  enqer  10940  addpqf  10963  mulpqf  10965  adderpqlem  10973  mulerpqlem  10974  addassnq  10977  mulassnq  10978  mulcanenq  10979  distrnq  10980  recmulnq  10983  ltsonq  10988  lterpq  10989  ltanq  10990  ltmnq  10991  ltexnq  10994  archnq  10999
  Copyright terms: Public domain W3C validator