![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0npi | Structured version Visualization version GIF version |
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0npi | ⊢ ¬ ∅ ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ∅ = ∅ | |
2 | elni 10945 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
3 | 2 | simprbi 496 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
4 | 3 | necon2bi 2977 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 ωcom 7903 Ncnpi 10913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-sn 4649 df-ni 10941 |
This theorem is referenced by: addasspi 10964 mulasspi 10966 distrpi 10967 addcanpi 10968 mulcanpi 10969 addnidpi 10970 ltapi 10972 ltmpi 10973 ordpipq 11011 |
Copyright terms: Public domain | W3C validator |