MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npi Structured version   Visualization version   GIF version

Theorem 0npi 10901
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npi ¬ ∅ ∈ N

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2736 . 2 ∅ = ∅
2 elni 10895 . . . 4 (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅))
32simprbi 496 . . 3 (∅ ∈ N → ∅ ≠ ∅)
43necon2bi 2963 . 2 (∅ = ∅ → ¬ ∅ ∈ N)
51, 4ax-mp 5 1 ¬ ∅ ∈ N
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wne 2933  c0 4313  ωcom 7866  Ncnpi 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-v 3466  df-dif 3934  df-sn 4607  df-ni 10891
This theorem is referenced by:  addasspi  10914  mulasspi  10916  distrpi  10917  addcanpi  10918  mulcanpi  10919  addnidpi  10920  ltapi  10922  ltmpi  10923  ordpipq  10961
  Copyright terms: Public domain W3C validator