Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0npi | Structured version Visualization version GIF version |
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0npi | ⊢ ¬ ∅ ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ ∅ = ∅ | |
2 | elni 10616 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
3 | 2 | simprbi 496 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
4 | 3 | necon2bi 2975 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∅c0 4261 ωcom 7700 Ncnpi 10584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-sn 4567 df-ni 10612 |
This theorem is referenced by: addasspi 10635 mulasspi 10637 distrpi 10638 addcanpi 10639 mulcanpi 10640 addnidpi 10641 ltapi 10643 ltmpi 10644 ordpipq 10682 |
Copyright terms: Public domain | W3C validator |