MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0npi Structured version   Visualization version   GIF version

Theorem 0npi 10881
Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0npi ¬ ∅ ∈ N

Proof of Theorem 0npi
StepHypRef Expression
1 eqid 2730 . 2 ∅ = ∅
2 elni 10875 . . . 4 (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅))
32simprbi 495 . . 3 (∅ ∈ N → ∅ ≠ ∅)
43necon2bi 2969 . 2 (∅ = ∅ → ¬ ∅ ∈ N)
51, 4ax-mp 5 1 ¬ ∅ ∈ N
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2104  wne 2938  c0 4323  ωcom 7859  Ncnpi 10843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-v 3474  df-dif 3952  df-sn 4630  df-ni 10871
This theorem is referenced by:  addasspi  10894  mulasspi  10896  distrpi  10897  addcanpi  10898  mulcanpi  10899  addnidpi  10900  ltapi  10902  ltmpi  10903  ordpipq  10941
  Copyright terms: Public domain W3C validator