| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0npi | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0npi | ⊢ ¬ ∅ ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ ∅ = ∅ | |
| 2 | elni 10895 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
| 3 | 2 | simprbi 496 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
| 4 | 3 | necon2bi 2963 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 ωcom 7866 Ncnpi 10863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-sn 4607 df-ni 10891 |
| This theorem is referenced by: addasspi 10914 mulasspi 10916 distrpi 10917 addcanpi 10918 mulcanpi 10919 addnidpi 10920 ltapi 10922 ltmpi 10923 ordpipq 10961 |
| Copyright terms: Public domain | W3C validator |