| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0npi | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0npi | ⊢ ¬ ∅ ∈ N |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ ∅ = ∅ | |
| 2 | elni 10767 | . . . 4 ⊢ (∅ ∈ N ↔ (∅ ∈ ω ∧ ∅ ≠ ∅)) | |
| 3 | 2 | simprbi 496 | . . 3 ⊢ (∅ ∈ N → ∅ ≠ ∅) |
| 4 | 3 | necon2bi 2958 | . 2 ⊢ (∅ = ∅ → ¬ ∅ ∈ N) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ¬ ∅ ∈ N |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 ωcom 7796 Ncnpi 10735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-sn 4574 df-ni 10763 |
| This theorem is referenced by: addasspi 10786 mulasspi 10788 distrpi 10789 addcanpi 10790 mulcanpi 10791 addnidpi 10792 ltapi 10794 ltmpi 10795 ordpipq 10833 |
| Copyright terms: Public domain | W3C validator |