MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pi Structured version   Visualization version   GIF version

Theorem 1pi 10639
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
1pi 1oN

Proof of Theorem 1pi
StepHypRef Expression
1 1onn 8470 . 2 1o ∈ ω
2 1n0 8318 . 2 1o ≠ ∅
3 elni 10632 . 2 (1oN ↔ (1o ∈ ω ∧ 1o ≠ ∅))
41, 2, 3mpbir2an 708 1 1oN
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wne 2943  c0 4256  ωcom 7712  1oc1o 8290  Ncnpi 10600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-om 7713  df-1o 8297  df-ni 10628
This theorem is referenced by:  mulidpi  10642  1lt2pi  10661  nlt1pi  10662  indpi  10663  pinq  10683  1nq  10684  1nqenq  10718  mulidnq  10719  1lt2nq  10729  archnq  10736  prlem934  10789
  Copyright terms: Public domain W3C validator