MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pi Structured version   Visualization version   GIF version

Theorem 1pi 10836
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
1pi 1oN

Proof of Theorem 1pi
StepHypRef Expression
1 1onn 8604 . 2 1o ∈ ω
2 1n0 8452 . 2 1o ≠ ∅
3 elni 10829 . 2 (1oN ↔ (1o ∈ ω ∧ 1o ≠ ∅))
41, 2, 3mpbir2an 711 1 1oN
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wne 2925  c0 4296  ωcom 7842  1oc1o 8427  Ncnpi 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-om 7843  df-1o 8434  df-ni 10825
This theorem is referenced by:  mulidpi  10839  1lt2pi  10858  nlt1pi  10859  indpi  10860  pinq  10880  1nq  10881  1nqenq  10915  mulidnq  10916  1lt2nq  10926  archnq  10933  prlem934  10986
  Copyright terms: Public domain W3C validator