MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pi Structured version   Visualization version   GIF version

Theorem 1pi 10877
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
1pi 1oN

Proof of Theorem 1pi
StepHypRef Expression
1 1onn 8638 . 2 1o ∈ ω
2 1n0 8487 . 2 1o ≠ ∅
3 elni 10870 . 2 (1oN ↔ (1o ∈ ω ∧ 1o ≠ ∅))
41, 2, 3mpbir2an 709 1 1oN
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wne 2940  c0 4322  ωcom 7854  1oc1o 8458  Ncnpi 10838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-om 7855  df-1o 8465  df-ni 10866
This theorem is referenced by:  mulidpi  10880  1lt2pi  10899  nlt1pi  10900  indpi  10901  pinq  10921  1nq  10922  1nqenq  10956  mulidnq  10957  1lt2nq  10967  archnq  10974  prlem934  11027
  Copyright terms: Public domain W3C validator