Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pi | Structured version Visualization version GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8470 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 8318 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 10632 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ 1o ∈ N |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ωcom 7712 1oc1o 8290 Ncnpi 10600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-om 7713 df-1o 8297 df-ni 10628 |
This theorem is referenced by: mulidpi 10642 1lt2pi 10661 nlt1pi 10662 indpi 10663 pinq 10683 1nq 10684 1nqenq 10718 mulidnq 10719 1lt2nq 10729 archnq 10736 prlem934 10789 |
Copyright terms: Public domain | W3C validator |