![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1pi | Structured version Visualization version GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8677 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 8525 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 10914 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ 1o ∈ N |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 ωcom 7887 1oc1o 8498 Ncnpi 10882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 df-1o 8505 df-ni 10910 |
This theorem is referenced by: mulidpi 10924 1lt2pi 10943 nlt1pi 10944 indpi 10945 pinq 10965 1nq 10966 1nqenq 11000 mulidnq 11001 1lt2nq 11011 archnq 11018 prlem934 11071 |
Copyright terms: Public domain | W3C validator |