MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pi Structured version   Visualization version   GIF version

Theorem 1pi 10771
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
1pi 1oN

Proof of Theorem 1pi
StepHypRef Expression
1 1onn 8555 . 2 1o ∈ ω
2 1n0 8403 . 2 1o ≠ ∅
3 elni 10764 . 2 (1oN ↔ (1o ∈ ω ∧ 1o ≠ ∅))
41, 2, 3mpbir2an 711 1 1oN
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wne 2928  c0 4283  ωcom 7796  1oc1o 8378  Ncnpi 10732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-om 7797  df-1o 8385  df-ni 10760
This theorem is referenced by:  mulidpi  10774  1lt2pi  10793  nlt1pi  10794  indpi  10795  pinq  10815  1nq  10816  1nqenq  10850  mulidnq  10851  1lt2nq  10861  archnq  10868  prlem934  10921
  Copyright terms: Public domain W3C validator