MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1pi Structured version   Visualization version   GIF version

Theorem 1pi 10908
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.)
Assertion
Ref Expression
1pi 1oN

Proof of Theorem 1pi
StepHypRef Expression
1 1onn 8661 . 2 1o ∈ ω
2 1n0 8509 . 2 1o ≠ ∅
3 elni 10901 . 2 (1oN ↔ (1o ∈ ω ∧ 1o ≠ ∅))
41, 2, 3mpbir2an 709 1 1oN
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wne 2929  c0 4322  ωcom 7871  1oc1o 8480  Ncnpi 10869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-om 7872  df-1o 8487  df-ni 10897
This theorem is referenced by:  mulidpi  10911  1lt2pi  10930  nlt1pi  10931  indpi  10932  pinq  10952  1nq  10953  1nqenq  10987  mulidnq  10988  1lt2nq  10998  archnq  11005  prlem934  11058
  Copyright terms: Public domain W3C validator