Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1pi | Structured version Visualization version GIF version |
Description: Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1pi | ⊢ 1o ∈ N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 8453 | . 2 ⊢ 1o ∈ ω | |
2 | 1n0 8307 | . 2 ⊢ 1o ≠ ∅ | |
3 | elni 10631 | . 2 ⊢ (1o ∈ N ↔ (1o ∈ ω ∧ 1o ≠ ∅)) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ 1o ∈ N |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 ωcom 7704 1oc1o 8279 Ncnpi 10599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-om 7705 df-1o 8286 df-ni 10627 |
This theorem is referenced by: mulidpi 10641 1lt2pi 10660 nlt1pi 10661 indpi 10662 pinq 10682 1nq 10683 1nqenq 10717 mulidnq 10718 1lt2nq 10728 archnq 10735 prlem934 10788 |
Copyright terms: Public domain | W3C validator |