MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlt1pi Structured version   Visualization version   GIF version

Theorem nlt1pi 9930
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
nlt1pi ¬ 𝐴 <N 1𝑜

Proof of Theorem nlt1pi
StepHypRef Expression
1 elni 9900 . . . 4 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 484 . . 3 (𝐴N𝐴 ≠ ∅)
3 noel 4067 . . . . . 6 ¬ 𝐴 ∈ ∅
4 1pi 9907 . . . . . . . . . 10 1𝑜N
5 ltpiord 9911 . . . . . . . . . 10 ((𝐴N ∧ 1𝑜N) → (𝐴 <N 1𝑜𝐴 ∈ 1𝑜))
64, 5mpan2 671 . . . . . . . . 9 (𝐴N → (𝐴 <N 1𝑜𝐴 ∈ 1𝑜))
7 df-1o 7713 . . . . . . . . . . 11 1𝑜 = suc ∅
87eleq2i 2842 . . . . . . . . . 10 (𝐴 ∈ 1𝑜𝐴 ∈ suc ∅)
9 elsucg 5935 . . . . . . . . . 10 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9syl5bb 272 . . . . . . . . 9 (𝐴N → (𝐴 ∈ 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 268 . . . . . . . 8 (𝐴N → (𝐴 <N 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 462 . . . . . . 7 ((𝐴N𝐴 <N 1𝑜) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 853 . . . . . 6 ((𝐴N𝐴 <N 1𝑜) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 20 . . . . 5 ((𝐴N𝐴 <N 1𝑜) → 𝐴 = ∅)
1514ex 397 . . . 4 (𝐴N → (𝐴 <N 1𝑜𝐴 = ∅))
1615necon3ad 2956 . . 3 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1𝑜))
172, 16mpd 15 . 2 (𝐴N → ¬ 𝐴 <N 1𝑜)
18 ltrelpi 9913 . . . . 5 <N ⊆ (N × N)
1918brel 5308 . . . 4 (𝐴 <N 1𝑜 → (𝐴N ∧ 1𝑜N))
2019simpld 482 . . 3 (𝐴 <N 1𝑜𝐴N)
2120con3i 151 . 2 𝐴N → ¬ 𝐴 <N 1𝑜)
2217, 21pm2.61i 176 1 ¬ 𝐴 <N 1𝑜
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  c0 4063   class class class wbr 4786  suc csuc 5868  ωcom 7212  1𝑜c1o 7706  Ncnpi 9868   <N clti 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-tr 4887  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-om 7213  df-1o 7713  df-ni 9896  df-lti 9899
This theorem is referenced by:  indpi  9931  pinq  9951  archnq  10004
  Copyright terms: Public domain W3C validator