Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlt1pi | Structured version Visualization version GIF version |
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlt1pi | ⊢ ¬ 𝐴 <N 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elni 10563 | . . . 4 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
2 | 1 | simprbi 496 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
3 | noel 4261 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
4 | 1pi 10570 | . . . . . . . . . 10 ⊢ 1o ∈ N | |
5 | ltpiord 10574 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) | |
6 | 4, 5 | mpan2 687 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) |
7 | df-1o 8267 | . . . . . . . . . . 11 ⊢ 1o = suc ∅ | |
8 | 7 | eleq2i 2830 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅) |
9 | elsucg 6318 | . . . . . . . . . 10 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
10 | 8, 9 | syl5bb 282 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
11 | 6, 10 | bitrd 278 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
12 | 11 | biimpa 476 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
13 | 12 | ord 860 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
14 | 3, 13 | mpi 20 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → 𝐴 = ∅) |
15 | 14 | ex 412 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 <N 1o → 𝐴 = ∅)) |
16 | 15 | necon3ad 2955 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o)) |
17 | 2, 16 | mpd 15 | . 2 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
18 | ltrelpi 10576 | . . . . 5 ⊢ <N ⊆ (N × N) | |
19 | 18 | brel 5643 | . . . 4 ⊢ (𝐴 <N 1o → (𝐴 ∈ N ∧ 1o ∈ N)) |
20 | 19 | simpld 494 | . . 3 ⊢ (𝐴 <N 1o → 𝐴 ∈ N) |
21 | 20 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ N → ¬ 𝐴 <N 1o) |
22 | 17, 21 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 <N 1o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 class class class wbr 5070 suc csuc 6253 ωcom 7687 1oc1o 8260 Ncnpi 10531 <N clti 10534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 df-1o 8267 df-ni 10559 df-lti 10562 |
This theorem is referenced by: indpi 10594 pinq 10614 archnq 10667 |
Copyright terms: Public domain | W3C validator |