![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlt1pi | Structured version Visualization version GIF version |
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nlt1pi | ⊢ ¬ 𝐴 <N 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elni 10901 | . . . 4 ⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | |
2 | 1 | simprbi 495 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ≠ ∅) |
3 | noel 4330 | . . . . . 6 ⊢ ¬ 𝐴 ∈ ∅ | |
4 | 1pi 10908 | . . . . . . . . . 10 ⊢ 1o ∈ N | |
5 | ltpiord 10912 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) | |
6 | 4, 5 | mpan2 689 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ 𝐴 ∈ 1o)) |
7 | df-1o 8487 | . . . . . . . . . . 11 ⊢ 1o = suc ∅ | |
8 | 7 | eleq2i 2817 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 1o ↔ 𝐴 ∈ suc ∅) |
9 | elsucg 6439 | . . . . . . . . . 10 ⊢ (𝐴 ∈ N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) | |
10 | 8, 9 | bitrid 282 | . . . . . . . . 9 ⊢ (𝐴 ∈ N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
11 | 6, 10 | bitrd 278 | . . . . . . . 8 ⊢ (𝐴 ∈ N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅))) |
12 | 11 | biimpa 475 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅)) |
13 | 12 | ord 862 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅)) |
14 | 3, 13 | mpi 20 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 𝐴 <N 1o) → 𝐴 = ∅) |
15 | 14 | ex 411 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 <N 1o → 𝐴 = ∅)) |
16 | 15 | necon3ad 2942 | . . 3 ⊢ (𝐴 ∈ N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o)) |
17 | 2, 16 | mpd 15 | . 2 ⊢ (𝐴 ∈ N → ¬ 𝐴 <N 1o) |
18 | ltrelpi 10914 | . . . . 5 ⊢ <N ⊆ (N × N) | |
19 | 18 | brel 5743 | . . . 4 ⊢ (𝐴 <N 1o → (𝐴 ∈ N ∧ 1o ∈ N)) |
20 | 19 | simpld 493 | . . 3 ⊢ (𝐴 <N 1o → 𝐴 ∈ N) |
21 | 20 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ N → ¬ 𝐴 <N 1o) |
22 | 17, 21 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 <N 1o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∅c0 4322 class class class wbr 5149 suc csuc 6373 ωcom 7871 1oc1o 8480 Ncnpi 10869 <N clti 10872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-om 7872 df-1o 8487 df-ni 10897 df-lti 10900 |
This theorem is referenced by: indpi 10932 pinq 10952 archnq 11005 |
Copyright terms: Public domain | W3C validator |