MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlt1pi Structured version   Visualization version   GIF version

Theorem nlt1pi 10931
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
nlt1pi ¬ 𝐴 <N 1o

Proof of Theorem nlt1pi
StepHypRef Expression
1 elni 10901 . . . 4 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 495 . . 3 (𝐴N𝐴 ≠ ∅)
3 noel 4330 . . . . . 6 ¬ 𝐴 ∈ ∅
4 1pi 10908 . . . . . . . . . 10 1oN
5 ltpiord 10912 . . . . . . . . . 10 ((𝐴N ∧ 1oN) → (𝐴 <N 1o𝐴 ∈ 1o))
64, 5mpan2 689 . . . . . . . . 9 (𝐴N → (𝐴 <N 1o𝐴 ∈ 1o))
7 df-1o 8487 . . . . . . . . . . 11 1o = suc ∅
87eleq2i 2817 . . . . . . . . . 10 (𝐴 ∈ 1o𝐴 ∈ suc ∅)
9 elsucg 6439 . . . . . . . . . 10 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9bitrid 282 . . . . . . . . 9 (𝐴N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 278 . . . . . . . 8 (𝐴N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 475 . . . . . . 7 ((𝐴N𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 862 . . . . . 6 ((𝐴N𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 20 . . . . 5 ((𝐴N𝐴 <N 1o) → 𝐴 = ∅)
1514ex 411 . . . 4 (𝐴N → (𝐴 <N 1o𝐴 = ∅))
1615necon3ad 2942 . . 3 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o))
172, 16mpd 15 . 2 (𝐴N → ¬ 𝐴 <N 1o)
18 ltrelpi 10914 . . . . 5 <N ⊆ (N × N)
1918brel 5743 . . . 4 (𝐴 <N 1o → (𝐴N ∧ 1oN))
2019simpld 493 . . 3 (𝐴 <N 1o𝐴N)
2120con3i 154 . 2 𝐴N → ¬ 𝐴 <N 1o)
2217, 21pm2.61i 182 1 ¬ 𝐴 <N 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  c0 4322   class class class wbr 5149  suc csuc 6373  ωcom 7871  1oc1o 8480  Ncnpi 10869   <N clti 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-om 7872  df-1o 8487  df-ni 10897  df-lti 10900
This theorem is referenced by:  indpi  10932  pinq  10952  archnq  11005
  Copyright terms: Public domain W3C validator