MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlt1pi Structured version   Visualization version   GIF version

Theorem nlt1pi 10328
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
nlt1pi ¬ 𝐴 <N 1o

Proof of Theorem nlt1pi
StepHypRef Expression
1 elni 10298 . . . 4 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 499 . . 3 (𝐴N𝐴 ≠ ∅)
3 noel 4296 . . . . . 6 ¬ 𝐴 ∈ ∅
4 1pi 10305 . . . . . . . . . 10 1oN
5 ltpiord 10309 . . . . . . . . . 10 ((𝐴N ∧ 1oN) → (𝐴 <N 1o𝐴 ∈ 1o))
64, 5mpan2 689 . . . . . . . . 9 (𝐴N → (𝐴 <N 1o𝐴 ∈ 1o))
7 df-1o 8102 . . . . . . . . . . 11 1o = suc ∅
87eleq2i 2904 . . . . . . . . . 10 (𝐴 ∈ 1o𝐴 ∈ suc ∅)
9 elsucg 6258 . . . . . . . . . 10 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9syl5bb 285 . . . . . . . . 9 (𝐴N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 281 . . . . . . . 8 (𝐴N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 479 . . . . . . 7 ((𝐴N𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 860 . . . . . 6 ((𝐴N𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 20 . . . . 5 ((𝐴N𝐴 <N 1o) → 𝐴 = ∅)
1514ex 415 . . . 4 (𝐴N → (𝐴 <N 1o𝐴 = ∅))
1615necon3ad 3029 . . 3 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o))
172, 16mpd 15 . 2 (𝐴N → ¬ 𝐴 <N 1o)
18 ltrelpi 10311 . . . . 5 <N ⊆ (N × N)
1918brel 5617 . . . 4 (𝐴 <N 1o → (𝐴N ∧ 1oN))
2019simpld 497 . . 3 (𝐴 <N 1o𝐴N)
2120con3i 157 . 2 𝐴N → ¬ 𝐴 <N 1o)
2217, 21pm2.61i 184 1 ¬ 𝐴 <N 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  c0 4291   class class class wbr 5066  suc csuc 6193  ωcom 7580  1oc1o 8095  Ncnpi 10266   <N clti 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-om 7581  df-1o 8102  df-ni 10294  df-lti 10297
This theorem is referenced by:  indpi  10329  pinq  10349  archnq  10402
  Copyright terms: Public domain W3C validator