MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlt1pi Structured version   Visualization version   GIF version

Theorem nlt1pi 10593
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
nlt1pi ¬ 𝐴 <N 1o

Proof of Theorem nlt1pi
StepHypRef Expression
1 elni 10563 . . . 4 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 496 . . 3 (𝐴N𝐴 ≠ ∅)
3 noel 4261 . . . . . 6 ¬ 𝐴 ∈ ∅
4 1pi 10570 . . . . . . . . . 10 1oN
5 ltpiord 10574 . . . . . . . . . 10 ((𝐴N ∧ 1oN) → (𝐴 <N 1o𝐴 ∈ 1o))
64, 5mpan2 687 . . . . . . . . 9 (𝐴N → (𝐴 <N 1o𝐴 ∈ 1o))
7 df-1o 8267 . . . . . . . . . . 11 1o = suc ∅
87eleq2i 2830 . . . . . . . . . 10 (𝐴 ∈ 1o𝐴 ∈ suc ∅)
9 elsucg 6318 . . . . . . . . . 10 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9syl5bb 282 . . . . . . . . 9 (𝐴N → (𝐴 ∈ 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 278 . . . . . . . 8 (𝐴N → (𝐴 <N 1o ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 476 . . . . . . 7 ((𝐴N𝐴 <N 1o) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 860 . . . . . 6 ((𝐴N𝐴 <N 1o) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 20 . . . . 5 ((𝐴N𝐴 <N 1o) → 𝐴 = ∅)
1514ex 412 . . . 4 (𝐴N → (𝐴 <N 1o𝐴 = ∅))
1615necon3ad 2955 . . 3 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1o))
172, 16mpd 15 . 2 (𝐴N → ¬ 𝐴 <N 1o)
18 ltrelpi 10576 . . . . 5 <N ⊆ (N × N)
1918brel 5643 . . . 4 (𝐴 <N 1o → (𝐴N ∧ 1oN))
2019simpld 494 . . 3 (𝐴 <N 1o𝐴N)
2120con3i 154 . 2 𝐴N → ¬ 𝐴 <N 1o)
2217, 21pm2.61i 182 1 ¬ 𝐴 <N 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  suc csuc 6253  ωcom 7687  1oc1o 8260  Ncnpi 10531   <N clti 10534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-om 7688  df-1o 8267  df-ni 10559  df-lti 10562
This theorem is referenced by:  indpi  10594  pinq  10614  archnq  10667
  Copyright terms: Public domain W3C validator