MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabrOLD Structured version   Visualization version   GIF version

Theorem elopabrOLD 5567
Description: Obsolete version of elopabr 5565 as of 11-Dec-2024. (Contributed by AV, 16-Feb-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elopabrOLD (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴𝑅)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem elopabrOLD
StepHypRef Expression
1 elopab 5531 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦))
2 df-br 5143 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
32biimpi 216 . . . . 5 (𝑥𝑅𝑦 → ⟨𝑥, 𝑦⟩ ∈ 𝑅)
4 eleq1 2828 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
53, 4imbitrrid 246 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝑅𝑦𝐴𝑅))
65imp 406 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴𝑅)
76exlimivv 1931 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴𝑅)
81, 7sylbi 217 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  cop 4631   class class class wbr 5142  {copab 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator