![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabrOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elopabr 5557 as of 11-Dec-2024. (Contributed by AV, 16-Feb-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elopabrOLD | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5523 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)) | |
2 | df-br 5144 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
3 | 2 | biimpi 215 | . . . . 5 ⊢ (𝑥𝑅𝑦 → ⟨𝑥, 𝑦⟩ ∈ 𝑅) |
4 | eleq1 2813 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) | |
5 | 3, 4 | imbitrrid 245 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝑅𝑦 → 𝐴 ∈ 𝑅)) |
6 | 5 | imp 405 | . . 3 ⊢ ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴 ∈ 𝑅) |
7 | 6 | exlimivv 1927 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴 ∈ 𝑅) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4630 class class class wbr 5143 {copab 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-dif 3942 df-un 3944 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |