MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabrOLD Structured version   Visualization version   GIF version

Theorem elopabrOLD 5521
Description: Obsolete version of elopabr 5519 as of 11-Dec-2024. (Contributed by AV, 16-Feb-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elopabrOLD (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴𝑅)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem elopabrOLD
StepHypRef Expression
1 elopab 5485 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦))
2 df-br 5107 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
32biimpi 215 . . . . 5 (𝑥𝑅𝑦 → ⟨𝑥, 𝑦⟩ ∈ 𝑅)
4 eleq1 2826 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
53, 4imbitrrid 245 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝑥𝑅𝑦𝐴𝑅))
65imp 408 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴𝑅)
76exlimivv 1936 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝐴𝑅)
81, 7sylbi 216 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} → 𝐴𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  cop 4593   class class class wbr 5106  {copab 5168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator