| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopabrOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of elopabr 5521 as of 11-Dec-2024. (Contributed by AV, 16-Feb-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elopabrOLD | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 5487 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦)) | |
| 2 | df-br 5108 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (𝑥𝑅𝑦 → 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 4 | eleq1 2816 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
| 5 | 3, 4 | imbitrrid 246 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝑥𝑅𝑦 → 𝐴 ∈ 𝑅)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝐴 ∈ 𝑅) |
| 7 | 6 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑥𝑅𝑦) → 𝐴 ∈ 𝑅) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} → 𝐴 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 {copab 5169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |