| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5501 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1797 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3911 {copab 5164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ss 3928 df-opab 5165 |
| This theorem is referenced by: elopabran 5516 elopaelxp 5721 opabssxp 5723 relopabiv 5774 funopab4 6537 ssoprab2i 7480 cnvoprab 8018 mptmpoopabbrd 8038 cardf2 9872 dfac3 10050 axdc2lem 10377 fpwwe2lem1 10560 canthwe 10580 trclublem 14937 fullfunc 17850 fthfunc 17851 isfull 17854 isfth 17858 ipoval 18471 ipolerval 18473 eqgfval 19090 2ndcctbss 23375 iscgrg 28492 ishpg 28739 nvss 30572 ajfval 30788 afsval 34655 cvmlift2lem12 35294 satf0suclem 35355 fmlasuc0 35364 bj-opabssvv 37131 bj-imdirval2lem 37163 bj-xpcossxp 37170 dicval 41163 areaquad 43198 relopabVD 44883 |
| Copyright terms: Public domain | W3C validator |