![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 5565 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1793 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1795 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ⊆ wss 3976 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ss 3993 df-opab 5229 |
This theorem is referenced by: elopabran 5581 elopaelxp 5789 opabssxp 5792 relopabiv 5844 funopab4 6615 ssoprab2i 7561 cnvoprab 8101 mptmpoopabbrd 8121 cardf2 10012 dfac3 10190 axdc2lem 10517 fpwwe2lem1 10700 canthwe 10720 trclublem 15044 fullfunc 17973 fthfunc 17974 isfull 17977 isfth 17981 ipoval 18600 ipolerval 18602 eqgfval 19216 2ndcctbss 23484 iscgrg 28538 ishpg 28785 nvss 30625 ajfval 30841 afsval 34648 cvmlift2lem12 35282 satf0suclem 35343 fmlasuc0 35352 bj-opabssvv 37116 bj-imdirval2lem 37148 bj-xpcossxp 37155 dicval 41133 areaquad 43177 relopabVD 44872 |
Copyright terms: Public domain | W3C validator |