![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 5556 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1792 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1794 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ⊆ wss 3963 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-ss 3980 df-opab 5211 |
This theorem is referenced by: elopabran 5572 elopaelxp 5778 opabssxp 5781 relopabiv 5833 funopab4 6605 ssoprab2i 7544 cnvoprab 8084 mptmpoopabbrd 8104 cardf2 9981 dfac3 10159 axdc2lem 10486 fpwwe2lem1 10669 canthwe 10689 trclublem 15031 fullfunc 17960 fthfunc 17961 isfull 17964 isfth 17968 ipoval 18588 ipolerval 18590 eqgfval 19207 2ndcctbss 23479 iscgrg 28535 ishpg 28782 nvss 30622 ajfval 30838 afsval 34665 cvmlift2lem12 35299 satf0suclem 35360 fmlasuc0 35369 bj-opabssvv 37133 bj-imdirval2lem 37165 bj-xpcossxp 37172 dicval 41159 areaquad 43205 relopabVD 44899 |
Copyright terms: Public domain | W3C validator |