| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5506 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1797 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3914 {copab 5169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ss 3931 df-opab 5170 |
| This theorem is referenced by: elopabran 5522 elopaelxp 5728 opabssxp 5731 relopabiv 5783 funopab4 6553 ssoprab2i 7500 cnvoprab 8039 mptmpoopabbrd 8059 cardf2 9896 dfac3 10074 axdc2lem 10401 fpwwe2lem1 10584 canthwe 10604 trclublem 14961 fullfunc 17870 fthfunc 17871 isfull 17874 isfth 17878 ipoval 18489 ipolerval 18491 eqgfval 19108 2ndcctbss 23342 iscgrg 28439 ishpg 28686 nvss 30522 ajfval 30738 afsval 34662 cvmlift2lem12 35301 satf0suclem 35362 fmlasuc0 35371 bj-opabssvv 37138 bj-imdirval2lem 37170 bj-xpcossxp 37177 dicval 41170 areaquad 43205 relopabVD 44890 |
| Copyright terms: Public domain | W3C validator |