Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 5452 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1799 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1801 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊆ wss 3883 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 |
This theorem is referenced by: elopabran 5467 opabssxp 5669 relopabiv 5719 funopab4 6455 ssoprab2i 7363 cnvoprab 7873 cardf2 9632 dfac3 9808 axdc2lem 10135 fpwwe2lem1 10318 canthwe 10338 trclublem 14634 fullfunc 17538 fthfunc 17539 isfull 17542 isfth 17546 ipoval 18163 ipolerval 18165 eqgfval 18719 2ndcctbss 22514 iscgrg 26777 ishpg 27024 pthsfval 27990 spthsfval 27991 crcts 28057 cycls 28058 eupths 28465 nvss 28856 ajfval 29072 afsval 32551 cvmlift2lem12 33176 satf0suclem 33237 fmlasuc0 33246 bj-opabssvv 35248 bj-imdirval2lem 35280 bj-xpcossxp 35287 dicval 39117 areaquad 40963 relopabVD 42410 |
Copyright terms: Public domain | W3C validator |