Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 5460 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1798 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1800 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊆ wss 3888 {copab 5137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-opab 5138 |
This theorem is referenced by: elopabran 5476 elopaelxp 5677 opabssxp 5680 relopabiv 5732 funopab4 6478 ssoprab2i 7394 cnvoprab 7909 cardf2 9710 dfac3 9886 axdc2lem 10213 fpwwe2lem1 10396 canthwe 10416 trclublem 14715 fullfunc 17631 fthfunc 17632 isfull 17635 isfth 17639 ipoval 18257 ipolerval 18259 eqgfval 18813 2ndcctbss 22615 iscgrg 26882 ishpg 27129 nvss 28964 ajfval 29180 afsval 32660 cvmlift2lem12 33285 satf0suclem 33346 fmlasuc0 33355 bj-opabssvv 35330 bj-imdirval2lem 35362 bj-xpcossxp 35369 dicval 39197 areaquad 41054 relopabVD 42528 |
Copyright terms: Public domain | W3C validator |