| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5484 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1798 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ⊆ wss 3897 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3914 df-opab 5152 |
| This theorem is referenced by: elopabran 5499 elopaelxp 5704 opabssxp 5706 relopabiv 5759 funopab4 6518 ssoprab2i 7457 cnvoprab 7992 mptmpoopabbrd 8012 cardf2 9836 dfac3 10012 axdc2lem 10339 fpwwe2lem1 10522 canthwe 10542 trclublem 14902 fullfunc 17815 fthfunc 17816 isfull 17819 isfth 17823 ipoval 18436 ipolerval 18438 eqgfval 19088 2ndcctbss 23370 iscgrg 28490 ishpg 28737 nvss 30573 ajfval 30789 afsval 34684 cvmlift2lem12 35358 satf0suclem 35419 fmlasuc0 35428 bj-opabssvv 37192 bj-imdirval2lem 37224 bj-xpcossxp 37231 dicval 41223 areaquad 43257 relopabVD 44941 |
| Copyright terms: Public domain | W3C validator |