| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5521 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1797 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3926 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-ss 3943 df-opab 5182 |
| This theorem is referenced by: elopabran 5537 elopaelxp 5744 opabssxp 5747 relopabiv 5799 funopab4 6573 ssoprab2i 7518 cnvoprab 8059 mptmpoopabbrd 8079 cardf2 9957 dfac3 10135 axdc2lem 10462 fpwwe2lem1 10645 canthwe 10665 trclublem 15014 fullfunc 17921 fthfunc 17922 isfull 17925 isfth 17929 ipoval 18540 ipolerval 18542 eqgfval 19159 2ndcctbss 23393 iscgrg 28491 ishpg 28738 nvss 30574 ajfval 30790 afsval 34703 cvmlift2lem12 35336 satf0suclem 35397 fmlasuc0 35406 bj-opabssvv 37168 bj-imdirval2lem 37200 bj-xpcossxp 37207 dicval 41195 areaquad 43240 relopabVD 44925 |
| Copyright terms: Public domain | W3C validator |