| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5501 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1797 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3911 {copab 5164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ss 3928 df-opab 5165 |
| This theorem is referenced by: elopabran 5516 elopaelxp 5721 opabssxp 5723 relopabiv 5774 funopab4 6537 ssoprab2i 7480 cnvoprab 8018 mptmpoopabbrd 8038 cardf2 9872 dfac3 10050 axdc2lem 10377 fpwwe2lem1 10560 canthwe 10580 trclublem 14937 fullfunc 17846 fthfunc 17847 isfull 17850 isfth 17854 ipoval 18465 ipolerval 18467 eqgfval 19084 2ndcctbss 23318 iscgrg 28415 ishpg 28662 nvss 30495 ajfval 30711 afsval 34635 cvmlift2lem12 35274 satf0suclem 35335 fmlasuc0 35344 bj-opabssvv 37111 bj-imdirval2lem 37143 bj-xpcossxp 37150 dicval 41143 areaquad 43178 relopabVD 44863 |
| Copyright terms: Public domain | W3C validator |