| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5489 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1797 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3903 {copab 5154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ss 3920 df-opab 5155 |
| This theorem is referenced by: elopabran 5504 elopaelxp 5709 opabssxp 5711 relopabiv 5763 funopab4 6519 ssoprab2i 7460 cnvoprab 7995 mptmpoopabbrd 8015 cardf2 9839 dfac3 10015 axdc2lem 10342 fpwwe2lem1 10525 canthwe 10545 trclublem 14902 fullfunc 17815 fthfunc 17816 isfull 17819 isfth 17823 ipoval 18436 ipolerval 18438 eqgfval 19055 2ndcctbss 23340 iscgrg 28457 ishpg 28704 nvss 30537 ajfval 30753 afsval 34639 cvmlift2lem12 35287 satf0suclem 35348 fmlasuc0 35357 bj-opabssvv 37124 bj-imdirval2lem 37156 bj-xpcossxp 37163 dicval 41155 areaquad 43189 relopabVD 44874 |
| Copyright terms: Public domain | W3C validator |