Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 5408 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1798 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1800 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊆ wss 3861 {copab 5099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-in 3868 df-ss 3878 df-opab 5100 |
This theorem is referenced by: elopabran 5423 opabssxp 5618 relopabiv 5668 funopab4 6378 ssoprab2i 7264 cnvoprab 7769 cardf2 9419 dfac3 9595 axdc2lem 9922 fpwwe2lem1 10105 canthwe 10125 trclublem 14416 fullfunc 17250 fthfunc 17251 isfull 17254 isfth 17258 ipoval 17845 ipolerval 17847 eqgfval 18410 2ndcctbss 22170 iscgrg 26420 ishpg 26667 pthsfval 27624 spthsfval 27625 crcts 27691 cycls 27692 eupths 28099 nvss 28490 ajfval 28706 afsval 32184 cvmlift2lem12 32806 satf0suclem 32867 fmlasuc0 32876 bj-opabssvv 34881 bj-imdirval2lem 34913 bj-xpcossxp 34920 dicval 38788 areaquad 40585 relopabVD 42026 |
Copyright terms: Public domain | W3C validator |