![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version |
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
Ref | Expression |
---|---|
ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2 5546 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
4 | 1, 3 | mpg 1798 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3948 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-opab 5211 |
This theorem is referenced by: elopabran 5562 elopaelxp 5765 opabssxp 5768 relopabiv 5820 funopab4 6585 ssoprab2i 7522 cnvoprab 8050 mptmpoopabbrd 8071 cardf2 9944 dfac3 10122 axdc2lem 10449 fpwwe2lem1 10632 canthwe 10652 trclublem 14949 fullfunc 17866 fthfunc 17867 isfull 17870 isfth 17874 ipoval 18493 ipolerval 18495 eqgfval 19099 2ndcctbss 23279 iscgrg 28197 ishpg 28444 nvss 30280 ajfval 30496 afsval 34148 cvmlift2lem12 34770 satf0suclem 34831 fmlasuc0 34840 bj-opabssvv 36497 bj-imdirval2lem 36529 bj-xpcossxp 36536 dicval 40513 areaquad 42430 relopabVD 44127 |
Copyright terms: Public domain | W3C validator |