| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2i | Structured version Visualization version GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 5509 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1797 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ⊆ wss 3917 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ss 3934 df-opab 5173 |
| This theorem is referenced by: elopabran 5525 elopaelxp 5731 opabssxp 5734 relopabiv 5786 funopab4 6556 ssoprab2i 7503 cnvoprab 8042 mptmpoopabbrd 8062 cardf2 9903 dfac3 10081 axdc2lem 10408 fpwwe2lem1 10591 canthwe 10611 trclublem 14968 fullfunc 17877 fthfunc 17878 isfull 17881 isfth 17885 ipoval 18496 ipolerval 18498 eqgfval 19115 2ndcctbss 23349 iscgrg 28446 ishpg 28693 nvss 30529 ajfval 30745 afsval 34669 cvmlift2lem12 35308 satf0suclem 35369 fmlasuc0 35378 bj-opabssvv 37145 bj-imdirval2lem 37177 bj-xpcossxp 37184 dicval 41177 areaquad 43212 relopabVD 44897 |
| Copyright terms: Public domain | W3C validator |