MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkwlk Structured version   Visualization version   GIF version

Theorem clwlkwlk 29738
Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
clwlkwlk (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))

Proof of Theorem clwlkwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopabran 5508 . 2 (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} → 𝑊 ∈ (Walks‘𝐺))
2 clwlks 29735 . 2 (ClWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
31, 2eleq2s 2846 1 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  {copab 5157  cfv 6486  0cc0 11028  chash 14255  Walkscwlks 29560  ClWalkscclwlks 29733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-clwlks 29734
This theorem is referenced by:  clwlkswks  29739  upgrclwlkcompim  29744  clwlkcompbp  29745  clwlkclwwlkflem  29966  clwlknf1oclwwlknlem1  30043  clwlknf1oclwwlkn  30046  clwwlknonclwlknonf1o  30324  dlwwlknondlwlknonf1olem1  30326  wlkl0  30329
  Copyright terms: Public domain W3C validator