MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkwlk Structured version   Visualization version   GIF version

Theorem clwlkwlk 29751
Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
clwlkwlk (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))

Proof of Theorem clwlkwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elopabran 5501 . 2 (𝑊 ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} → 𝑊 ∈ (Walks‘𝐺))
2 clwlks 29748 . 2 (ClWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
31, 2eleq2s 2849 1 (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  {copab 5153  cfv 6481  0cc0 11003  chash 14234  Walkscwlks 29573  ClWalkscclwlks 29746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-clwlks 29747
This theorem is referenced by:  clwlkswks  29752  upgrclwlkcompim  29757  clwlkcompbp  29758  clwlkclwwlkflem  29979  clwlknf1oclwwlknlem1  30056  clwlknf1oclwwlkn  30059  clwwlknonclwlknonf1o  30337  dlwwlknondlwlknonf1olem1  30339  wlkl0  30342
  Copyright terms: Public domain W3C validator