![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkwlk | Structured version Visualization version GIF version |
Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
clwlkwlk | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopabran 5581 | . 2 ⊢ (𝑊 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} → 𝑊 ∈ (Walks‘𝐺)) | |
2 | clwlks 29808 | . 2 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
3 | 1, 2 | eleq2s 2862 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 ‘cfv 6573 0cc0 11184 ♯chash 14379 Walkscwlks 29632 ClWalkscclwlks 29806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-clwlks 29807 |
This theorem is referenced by: clwlkswks 29812 upgrclwlkcompim 29817 clwlkcompbp 29818 clwlkclwwlkflem 30036 clwlknf1oclwwlknlem1 30113 clwlknf1oclwwlkn 30116 clwwlknonclwlknonf1o 30394 dlwwlknondlwlknonf1olem1 30396 wlkl0 30399 |
Copyright terms: Public domain | W3C validator |