![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkwlk | Structured version Visualization version GIF version |
Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
clwlkwlk | β’ (π β (ClWalksβπΊ) β π β (WalksβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopabran 5555 | . 2 β’ (π β {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} β π β (WalksβπΊ)) | |
2 | clwlks 29538 | . 2 β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} | |
3 | 1, 2 | eleq2s 2845 | 1 β’ (π β (ClWalksβπΊ) β π β (WalksβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 class class class wbr 5141 {copab 5203 βcfv 6537 0cc0 11112 β―chash 14295 Walkscwlks 29362 ClWalkscclwlks 29536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-clwlks 29537 |
This theorem is referenced by: clwlkswks 29542 upgrclwlkcompim 29547 clwlkcompbp 29548 clwlkclwwlkflem 29766 clwlknf1oclwwlknlem1 29843 clwlknf1oclwwlkn 29846 clwwlknonclwlknonf1o 30124 dlwwlknondlwlknonf1olem1 30126 wlkl0 30129 |
Copyright terms: Public domain | W3C validator |