| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkwlk | Structured version Visualization version GIF version | ||
| Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| clwlkwlk | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopabran 5501 | . 2 ⊢ (𝑊 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} → 𝑊 ∈ (Walks‘𝐺)) | |
| 2 | clwlks 29748 | . 2 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
| 3 | 1, 2 | eleq2s 2849 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 {copab 5153 ‘cfv 6481 0cc0 11003 ♯chash 14234 Walkscwlks 29573 ClWalkscclwlks 29746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-clwlks 29747 |
| This theorem is referenced by: clwlkswks 29752 upgrclwlkcompim 29757 clwlkcompbp 29758 clwlkclwwlkflem 29979 clwlknf1oclwwlknlem1 30056 clwlknf1oclwwlkn 30059 clwwlknonclwlknonf1o 30337 dlwwlknondlwlknonf1olem1 30339 wlkl0 30342 |
| Copyright terms: Public domain | W3C validator |