| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkwlk | Structured version Visualization version GIF version | ||
| Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| clwlkwlk | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopabran 5525 | . 2 ⊢ (𝑊 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} → 𝑊 ∈ (Walks‘𝐺)) | |
| 2 | clwlks 29709 | . 2 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
| 3 | 1, 2 | eleq2s 2847 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 {copab 5172 ‘cfv 6514 0cc0 11075 ♯chash 14302 Walkscwlks 29531 ClWalkscclwlks 29707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-clwlks 29708 |
| This theorem is referenced by: clwlkswks 29713 upgrclwlkcompim 29718 clwlkcompbp 29719 clwlkclwwlkflem 29940 clwlknf1oclwwlknlem1 30017 clwlknf1oclwwlkn 30020 clwwlknonclwlknonf1o 30298 dlwwlknondlwlknonf1olem1 30300 wlkl0 30303 |
| Copyright terms: Public domain | W3C validator |