![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkwlk | Structured version Visualization version GIF version |
Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
clwlkwlk | β’ (π β (ClWalksβπΊ) β π β (WalksβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopabran 5562 | . 2 β’ (π β {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} β π β (WalksβπΊ)) | |
2 | clwlks 29026 | . 2 β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} | |
3 | 1, 2 | eleq2s 2851 | 1 β’ (π β (ClWalksβπΊ) β π β (WalksβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5148 {copab 5210 βcfv 6543 0cc0 11109 β―chash 14289 Walkscwlks 28850 ClWalkscclwlks 29024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-clwlks 29025 |
This theorem is referenced by: clwlkswks 29030 upgrclwlkcompim 29035 clwlkcompbp 29036 clwlkclwwlkflem 29254 clwlknf1oclwwlknlem1 29331 clwlknf1oclwwlkn 29334 clwwlknonclwlknonf1o 29612 dlwwlknondlwlknonf1olem1 29614 wlkl0 29617 |
Copyright terms: Public domain | W3C validator |