| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkwlk | Structured version Visualization version GIF version | ||
| Description: Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| clwlkwlk | ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopabran 5542 | . 2 ⊢ (𝑊 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} → 𝑊 ∈ (Walks‘𝐺)) | |
| 2 | clwlks 29759 | . 2 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
| 3 | 1, 2 | eleq2s 2853 | 1 ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 {copab 5186 ‘cfv 6536 0cc0 11134 ♯chash 14353 Walkscwlks 29581 ClWalkscclwlks 29757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-clwlks 29758 |
| This theorem is referenced by: clwlkswks 29763 upgrclwlkcompim 29768 clwlkcompbp 29769 clwlkclwwlkflem 29990 clwlknf1oclwwlknlem1 30067 clwlknf1oclwwlkn 30070 clwwlknonclwlknonf1o 30348 dlwwlknondlwlknonf1olem1 30350 wlkl0 30353 |
| Copyright terms: Public domain | W3C validator |