Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpreima Structured version   Visualization version   GIF version

Theorem indpreima 33092
Description: A function with range {0, 1} as an indicator of the preimage of {1}. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indpreima ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))

Proof of Theorem indpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6717 . . 3 (𝐹:𝑂⟶{0, 1} → 𝐹 Fn 𝑂)
21adantl 482 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 Fn 𝑂)
3 cnvimass 6080 . . . . 5 (𝐹 “ {1}) ⊆ dom 𝐹
4 fdm 6726 . . . . . 6 (𝐹:𝑂⟶{0, 1} → dom 𝐹 = 𝑂)
54adantl 482 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → dom 𝐹 = 𝑂)
63, 5sseqtrid 4034 . . . 4 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝐹 “ {1}) ⊆ 𝑂)
7 indf 33082 . . . 4 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
86, 7syldan 591 . . 3 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
98ffnd 6718 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})) Fn 𝑂)
10 simpr 485 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹:𝑂⟶{0, 1})
1110ffvelcdmda 7086 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {0, 1})
12 prcom 4736 . . . 4 {0, 1} = {1, 0}
1311, 12eleqtrdi 2843 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {1, 0})
148ffvelcdmda 7086 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {0, 1})
1514, 12eleqtrdi 2843 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {1, 0})
16 simpll 765 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑂𝑉)
176adantr 481 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹 “ {1}) ⊆ 𝑂)
18 simpr 485 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑥𝑂)
19 ind1a 33086 . . . . 5 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
2016, 17, 18, 19syl3anc 1371 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
21 fniniseg 7061 . . . . . 6 (𝐹 Fn 𝑂 → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
222, 21syl 17 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
2322baibd 540 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝐹𝑥) = 1))
2420, 23bitr2d 279 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((𝐹𝑥) = 1 ↔ (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1))
2513, 15, 24elpreq 31805 . 2 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) = (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥))
262, 9, 25eqfnfvd 7035 1 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3948  {csn 4628  {cpr 4630  ccnv 5675  dom cdm 5676  cima 5679   Fn wfn 6538  wf 6539  cfv 6543  0cc0 11112  1c1 11113  𝟭cind 33077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-i2m1 11180  ax-1ne0 11181  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-ind 33078
This theorem is referenced by:  indf1ofs  33093
  Copyright terms: Public domain W3C validator