Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpreima Structured version   Visualization version   GIF version

Theorem indpreima 32795
Description: A function with range {0, 1} as an indicator of the preimage of {1}. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indpreima ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))

Proof of Theorem indpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6691 . . 3 (𝐹:𝑂⟶{0, 1} → 𝐹 Fn 𝑂)
21adantl 481 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 Fn 𝑂)
3 cnvimass 6056 . . . . 5 (𝐹 “ {1}) ⊆ dom 𝐹
4 fdm 6700 . . . . . 6 (𝐹:𝑂⟶{0, 1} → dom 𝐹 = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → dom 𝐹 = 𝑂)
63, 5sseqtrid 3992 . . . 4 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝐹 “ {1}) ⊆ 𝑂)
7 indf 32785 . . . 4 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
86, 7syldan 591 . . 3 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
98ffnd 6692 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})) Fn 𝑂)
10 simpr 484 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹:𝑂⟶{0, 1})
1110ffvelcdmda 7059 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {0, 1})
12 prcom 4699 . . . 4 {0, 1} = {1, 0}
1311, 12eleqtrdi 2839 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {1, 0})
148ffvelcdmda 7059 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {0, 1})
1514, 12eleqtrdi 2839 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {1, 0})
16 simpll 766 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑂𝑉)
176adantr 480 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹 “ {1}) ⊆ 𝑂)
18 simpr 484 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑥𝑂)
19 ind1a 32789 . . . . 5 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
2016, 17, 18, 19syl3anc 1373 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
21 fniniseg 7035 . . . . . 6 (𝐹 Fn 𝑂 → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
222, 21syl 17 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
2322baibd 539 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝐹𝑥) = 1))
2420, 23bitr2d 280 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((𝐹𝑥) = 1 ↔ (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1))
2513, 15, 24elpreq 32464 . 2 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) = (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥))
262, 9, 25eqfnfvd 7009 1 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  {csn 4592  {cpr 4594  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  0cc0 11075  1c1 11076  𝟭cind 32780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-ind 32781
This theorem is referenced by:  indf1ofs  32796
  Copyright terms: Public domain W3C validator