Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpreima Structured version   Visualization version   GIF version

Theorem indpreima 32788
Description: A function with range {0, 1} as an indicator of the preimage of {1}. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indpreima ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))

Proof of Theorem indpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6688 . . 3 (𝐹:𝑂⟶{0, 1} → 𝐹 Fn 𝑂)
21adantl 481 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 Fn 𝑂)
3 cnvimass 6053 . . . . 5 (𝐹 “ {1}) ⊆ dom 𝐹
4 fdm 6697 . . . . . 6 (𝐹:𝑂⟶{0, 1} → dom 𝐹 = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → dom 𝐹 = 𝑂)
63, 5sseqtrid 3989 . . . 4 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝐹 “ {1}) ⊆ 𝑂)
7 indf 32778 . . . 4 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
86, 7syldan 591 . . 3 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
98ffnd 6689 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})) Fn 𝑂)
10 simpr 484 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹:𝑂⟶{0, 1})
1110ffvelcdmda 7056 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {0, 1})
12 prcom 4696 . . . 4 {0, 1} = {1, 0}
1311, 12eleqtrdi 2838 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {1, 0})
148ffvelcdmda 7056 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {0, 1})
1514, 12eleqtrdi 2838 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {1, 0})
16 simpll 766 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑂𝑉)
176adantr 480 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹 “ {1}) ⊆ 𝑂)
18 simpr 484 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑥𝑂)
19 ind1a 32782 . . . . 5 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
2016, 17, 18, 19syl3anc 1373 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
21 fniniseg 7032 . . . . . 6 (𝐹 Fn 𝑂 → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
222, 21syl 17 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
2322baibd 539 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝐹𝑥) = 1))
2420, 23bitr2d 280 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((𝐹𝑥) = 1 ↔ (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1))
2513, 15, 24elpreq 32457 . 2 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) = (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥))
262, 9, 25eqfnfvd 7006 1 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  {csn 4589  {cpr 4591  ccnv 5637  dom cdm 5638  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  0cc0 11068  1c1 11069  𝟭cind 32773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-ind 32774
This theorem is referenced by:  indf1ofs  32789
  Copyright terms: Public domain W3C validator