Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpreima Structured version   Visualization version   GIF version

Theorem indpreima 32821
Description: A function with range {0, 1} as an indicator of the preimage of {1}. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indpreima ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))

Proof of Theorem indpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6656 . . 3 (𝐹:𝑂⟶{0, 1} → 𝐹 Fn 𝑂)
21adantl 481 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 Fn 𝑂)
3 cnvimass 6037 . . . . 5 (𝐹 “ {1}) ⊆ dom 𝐹
4 fdm 6665 . . . . . 6 (𝐹:𝑂⟶{0, 1} → dom 𝐹 = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → dom 𝐹 = 𝑂)
63, 5sseqtrid 3980 . . . 4 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝐹 “ {1}) ⊆ 𝑂)
7 indf 32811 . . . 4 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
86, 7syldan 591 . . 3 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
98ffnd 6657 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})) Fn 𝑂)
10 simpr 484 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹:𝑂⟶{0, 1})
1110ffvelcdmda 7022 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {0, 1})
12 prcom 4686 . . . 4 {0, 1} = {1, 0}
1311, 12eleqtrdi 2838 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {1, 0})
148ffvelcdmda 7022 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {0, 1})
1514, 12eleqtrdi 2838 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {1, 0})
16 simpll 766 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑂𝑉)
176adantr 480 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹 “ {1}) ⊆ 𝑂)
18 simpr 484 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑥𝑂)
19 ind1a 32815 . . . . 5 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
2016, 17, 18, 19syl3anc 1373 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
21 fniniseg 6998 . . . . . 6 (𝐹 Fn 𝑂 → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
222, 21syl 17 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
2322baibd 539 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝐹𝑥) = 1))
2420, 23bitr2d 280 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((𝐹𝑥) = 1 ↔ (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1))
2513, 15, 24elpreq 32490 . 2 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) = (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥))
262, 9, 25eqfnfvd 6972 1 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905  {csn 4579  {cpr 4581  ccnv 5622  dom cdm 5623  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  0cc0 11028  1c1 11029  𝟭cind 32806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-i2m1 11096  ax-1ne0 11097  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-ind 32807
This theorem is referenced by:  indf1ofs  32822
  Copyright terms: Public domain W3C validator