Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indpreima Structured version   Visualization version   GIF version

Theorem indpreima 32842
Description: A function with range {0, 1} as an indicator of the preimage of {1}. (Contributed by Thierry Arnoux, 23-Aug-2017.)
Assertion
Ref Expression
indpreima ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))

Proof of Theorem indpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffn 6706 . . 3 (𝐹:𝑂⟶{0, 1} → 𝐹 Fn 𝑂)
21adantl 481 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 Fn 𝑂)
3 cnvimass 6069 . . . . 5 (𝐹 “ {1}) ⊆ dom 𝐹
4 fdm 6715 . . . . . 6 (𝐹:𝑂⟶{0, 1} → dom 𝐹 = 𝑂)
54adantl 481 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → dom 𝐹 = 𝑂)
63, 5sseqtrid 4001 . . . 4 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝐹 “ {1}) ⊆ 𝑂)
7 indf 32832 . . . 4 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
86, 7syldan 591 . . 3 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})):𝑂⟶{0, 1})
98ffnd 6707 . 2 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → ((𝟭‘𝑂)‘(𝐹 “ {1})) Fn 𝑂)
10 simpr 484 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹:𝑂⟶{0, 1})
1110ffvelcdmda 7074 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {0, 1})
12 prcom 4708 . . . 4 {0, 1} = {1, 0}
1311, 12eleqtrdi 2844 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) ∈ {1, 0})
148ffvelcdmda 7074 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {0, 1})
1514, 12eleqtrdi 2844 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) ∈ {1, 0})
16 simpll 766 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑂𝑉)
176adantr 480 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹 “ {1}) ⊆ 𝑂)
18 simpr 484 . . . . 5 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → 𝑥𝑂)
19 ind1a 32836 . . . . 5 ((𝑂𝑉 ∧ (𝐹 “ {1}) ⊆ 𝑂𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
2016, 17, 18, 19syl3anc 1373 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1 ↔ 𝑥 ∈ (𝐹 “ {1})))
21 fniniseg 7050 . . . . . 6 (𝐹 Fn 𝑂 → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
222, 21syl 17 . . . . 5 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝑥𝑂 ∧ (𝐹𝑥) = 1)))
2322baibd 539 . . . 4 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝑥 ∈ (𝐹 “ {1}) ↔ (𝐹𝑥) = 1))
2420, 23bitr2d 280 . . 3 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → ((𝐹𝑥) = 1 ↔ (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥) = 1))
2513, 15, 24elpreq 32509 . 2 (((𝑂𝑉𝐹:𝑂⟶{0, 1}) ∧ 𝑥𝑂) → (𝐹𝑥) = (((𝟭‘𝑂)‘(𝐹 “ {1}))‘𝑥))
262, 9, 25eqfnfvd 7024 1 ((𝑂𝑉𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(𝐹 “ {1})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926  {csn 4601  {cpr 4603  ccnv 5653  dom cdm 5654  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  0cc0 11129  1c1 11130  𝟭cind 32827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-ind 32828
This theorem is referenced by:  indf1ofs  32843
  Copyright terms: Public domain W3C validator