| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
| 2 | 1 | reximi 3084 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
| 3 | 2 | ralimi 3083 |
. . . 4
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
| 4 | | 0elpw 5356 |
. . . . . . 7
⊢ ∅
∈ 𝒫 𝑈 |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ∅ ∈ 𝒫 𝑈) |
| 6 | | biidd 262 |
. . . . . 6
⊢
((⊤ ∧ 𝑓 =
∅) → (∃𝑤
∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ↔ ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
| 7 | 5, 6 | rspcdv 3614 |
. . . . 5
⊢ (⊤
→ (∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
| 8 | 7 | mptru 1547 |
. . . 4
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
| 9 | | inss1 4237 |
. . . . . 6
⊢ (𝑈 ∩ 𝑤) ⊆ 𝑈 |
| 10 | | sstr2 3990 |
. . . . . 6
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → ((𝑈 ∩ 𝑤) ⊆ 𝑈 → 𝒫 𝑧 ⊆ 𝑈)) |
| 11 | 9, 10 | mpi 20 |
. . . . 5
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → 𝒫 𝑧 ⊆ 𝑈) |
| 12 | 11 | reximi 3084 |
. . . 4
⊢
(∃𝑤 ∈
𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ 𝑈) |
| 13 | | rexex 3076 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 𝒫 𝑧 ⊆ 𝑈 → ∃𝑤𝒫 𝑧 ⊆ 𝑈) |
| 14 | | ax5e 1912 |
. . . . 5
⊢
(∃𝑤𝒫
𝑧 ⊆ 𝑈 → 𝒫 𝑧 ⊆ 𝑈) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢
(∃𝑤 ∈
𝑈 𝒫 𝑧 ⊆ 𝑈 → 𝒫 𝑧 ⊆ 𝑈) |
| 16 | 3, 8, 12, 15 | 4syl 19 |
. . 3
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → 𝒫 𝑧 ⊆ 𝑈) |
| 17 | | inss1 4237 |
. . . . . . . 8
⊢ (𝑈 ∩ 𝑔) ⊆ 𝑈 |
| 18 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
| 19 | 18 | inex2 5318 |
. . . . . . . . 9
⊢ (𝑈 ∩ 𝑔) ∈ V |
| 20 | 19 | elpw 4604 |
. . . . . . . 8
⊢ ((𝑈 ∩ 𝑔) ∈ 𝒫 𝑈 ↔ (𝑈 ∩ 𝑔) ⊆ 𝑈) |
| 21 | 17, 20 | mpbir 231 |
. . . . . . 7
⊢ (𝑈 ∩ 𝑔) ∈ 𝒫 𝑈 |
| 22 | | unieq 4918 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ∪ 𝑓 = ∪
(𝑈 ∩ 𝑔)) |
| 23 | 22 | ineq2d 4220 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑈 ∩ 𝑔) → (𝑧 ∩ ∪ 𝑓) = (𝑧 ∩ ∪ (𝑈 ∩ 𝑔))) |
| 24 | | ineq1 4213 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑈 ∩ 𝑔) → (𝑓 ∩ 𝒫 𝒫 𝑤) = ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) |
| 25 | 24 | unieqd 4920 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ∪ (𝑓 ∩ 𝒫 𝒫 𝑤) = ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) |
| 26 | 23, 25 | sseq12d 4017 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ((𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤) ↔ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤))) |
| 27 | 26 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ((𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)))) |
| 28 | 27 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑓 = (𝑈 ∩ 𝑔) → (∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) ↔ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)))) |
| 29 | 28 | rspcv 3618 |
. . . . . . 7
⊢ ((𝑈 ∩ 𝑔) ∈ 𝒫 𝑈 → (∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)))) |
| 30 | 21, 29 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤))) |
| 31 | 30 | alrimiv 1927 |
. . . . 5
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑔∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤))) |
| 32 | | inss2 4238 |
. . . . . . . 8
⊢ (𝑈 ∩ 𝑤) ⊆ 𝑤 |
| 33 | | sstr2 3990 |
. . . . . . . 8
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → ((𝑈 ∩ 𝑤) ⊆ 𝑤 → 𝒫 𝑧 ⊆ 𝑤)) |
| 34 | 32, 33 | mpi 20 |
. . . . . . 7
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → 𝒫 𝑧 ⊆ 𝑤) |
| 35 | | an12 645 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔)) ↔ (𝑖 ∈ 𝑣 ∧ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔))) |
| 36 | | elin 3967 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑈 ∩ 𝑔) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔)) |
| 37 | 36 | bicomi 224 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔) ↔ 𝑣 ∈ (𝑈 ∩ 𝑔)) |
| 38 | 37 | anbi2i 623 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑣 ∧ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔)) ↔ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
| 39 | 35, 38 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔)) ↔ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
| 40 | 39 | exbii 1848 |
. . . . . . . . . 10
⊢
(∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔)) ↔ ∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
| 41 | | df-rex 3071 |
. . . . . . . . . 10
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔))) |
| 42 | | eluni 4910 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ∪ (𝑈
∩ 𝑔) ↔
∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
| 43 | 40, 41, 42 | 3bitr4i 303 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) ↔ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) |
| 44 | | simp1 1137 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) |
| 45 | | elin 3967 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ↔ (𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔))) |
| 46 | 45 | biimpri 228 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → 𝑖 ∈ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔))) |
| 47 | 46 | 3adant1 1131 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → 𝑖 ∈ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔))) |
| 48 | 44, 47 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → 𝑖 ∈ ∪ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) |
| 49 | | eluni 4910 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ↔
∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤))) |
| 50 | 48, 49 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → ∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤))) |
| 51 | | elinel1 4201 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → 𝑢 ∈ (𝑈 ∩ 𝑔)) |
| 52 | 51 | elin2d 4205 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → 𝑢 ∈ 𝑔) |
| 53 | | elinel2 4202 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → 𝑢 ∈ 𝒫 𝒫 𝑤) |
| 54 | | elpwpw 5102 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ 𝒫 𝒫
𝑤 ↔ (𝑢 ∈ V ∧ ∪ 𝑢
⊆ 𝑤)) |
| 55 | 54 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝒫 𝒫
𝑤 → ∪ 𝑢
⊆ 𝑤) |
| 56 | 53, 55 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → ∪ 𝑢
⊆ 𝑤) |
| 57 | 52, 56 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → (𝑢 ∈ 𝑔 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 58 | 57 | anim2i 617 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → (𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑔 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 59 | | an12 645 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑔 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 60 | 58, 59 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → (𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 61 | 60 | eximi 1835 |
. . . . . . . . . . . 12
⊢
(∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → ∃𝑢(𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 62 | | df-rex 3071 |
. . . . . . . . . . . 12
⊢
(∃𝑢 ∈
𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑢(𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 63 | 61, 62 | sylibr 234 |
. . . . . . . . . . 11
⊢
(∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 64 | 50, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 65 | 64 | 3expia 1122 |
. . . . . . . . 9
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧) → (𝑖 ∈ ∪ (𝑈 ∩ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 66 | 43, 65 | biimtrid 242 |
. . . . . . . 8
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧) → (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 67 | 66 | ralrimiva 3146 |
. . . . . . 7
⊢ ((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) →
∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 68 | 34, 67 | anim12i 613 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 69 | 68 | reximi 3084 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 70 | 31, 69 | sylg 1823 |
. . . 4
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑔∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 71 | | elequ2 2123 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑣 ∈ 𝑓 ↔ 𝑣 ∈ 𝑔)) |
| 72 | 71 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔))) |
| 73 | 72 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔))) |
| 74 | | rexeq 3322 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 75 | 73, 74 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 76 | 75 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 77 | 76 | anbi2d 630 |
. . . . . 6
⊢ (𝑓 = 𝑔 → ((𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
| 78 | 77 | rexbidv 3179 |
. . . . 5
⊢ (𝑓 = 𝑔 → (∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
| 79 | 78 | cbvalvw 2035 |
. . . 4
⊢
(∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ∀𝑔∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 80 | 70, 79 | sylibr 234 |
. . 3
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 81 | 16, 80 | jca 511 |
. 2
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
| 82 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑓𝒫
𝑧 ⊆ 𝑈 |
| 83 | | nfa1 2151 |
. . . 4
⊢
Ⅎ𝑓∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 84 | 82, 83 | nfan 1899 |
. . 3
⊢
Ⅎ𝑓(𝒫
𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 85 | | elpwi 4607 |
. . . 4
⊢ (𝑓 ∈ 𝒫 𝑈 → 𝑓 ⊆ 𝑈) |
| 86 | | sp 2183 |
. . . . . 6
⊢
(∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
| 87 | | ssin 4239 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝒫
𝑧 ⊆ 𝑤) ↔ 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
| 88 | 87 | biimpi 216 |
. . . . . . . . . . . 12
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝒫
𝑧 ⊆ 𝑤) → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
| 89 | 88 | ex 412 |
. . . . . . . . . . 11
⊢
(𝒫 𝑧 ⊆
𝑈 → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
| 90 | 89 | adantr 480 |
. . . . . . . . . 10
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
| 91 | | simp3 1139 |
. . . . . . . . . . . . . . . . 17
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → 𝑖 ∈ ∪ 𝑓) |
| 92 | | eluni 4910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ∪ 𝑓
↔ ∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 93 | 91, 92 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 94 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑓 ⊆ 𝑈) |
| 95 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝑓) |
| 96 | 94, 95 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝑈) |
| 97 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝑣) |
| 98 | 96, 97, 95 | 3jca 1129 |
. . . . . . . . . . . . . . . . . 18
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 99 | 98 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ((𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → (𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
| 100 | 99 | eximdv 1917 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → (∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
| 101 | 93, 100 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 102 | | df-rex 3071 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
| 103 | | 3anass 1095 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ (𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
| 104 | 103 | exbii 1848 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
| 105 | 102, 104 | bitr4i 278 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 106 | 101, 105 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
| 107 | 106 | 3expia 1122 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (𝑖 ∈ ∪ 𝑓 → ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
| 108 | | elin 3967 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ (𝑢 ∈ 𝑓 ∧ 𝑢 ∈ 𝒫 𝒫 𝑤)) |
| 109 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑢 ∈ V |
| 110 | 109, 54 | mpbiran 709 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ 𝒫 𝒫
𝑤 ↔ ∪ 𝑢
⊆ 𝑤) |
| 111 | 110 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ 𝑓 ∧ 𝑢 ∈ 𝒫 𝒫 𝑤) ↔ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 112 | 108, 111 | bitri 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 113 | 112 | anbi2i 623 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 114 | | an12 645 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 115 | 113, 114 | bitr4i 278 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 116 | 115 | exbii 1848 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∃𝑢(𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 117 | | eluni 4910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ∪ (𝑓
∩ 𝒫 𝒫 𝑤) ↔ ∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
| 118 | | df-rex 3071 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢 ∈
𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑢(𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
| 119 | 116, 117,
118 | 3bitr4i 303 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ∪ (𝑓
∩ 𝒫 𝒫 𝑤) ↔ ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
| 120 | 119 | biimpri 228 |
. . . . . . . . . . . . . 14
⊢
(∃𝑢 ∈
𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) |
| 121 | 120 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
| 122 | 107, 121 | imim12d 81 |
. . . . . . . . . . . 12
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → ((∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
| 123 | 122 | ralimdv 3169 |
. . . . . . . . . . 11
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → ∀𝑖 ∈ 𝑧 (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
| 124 | | elin 3967 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑧 ∩ ∪ 𝑓) ↔ (𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ 𝑓)) |
| 125 | 124 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ((𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
| 126 | | impexp 450 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
| 127 | 125, 126 | bitri 275 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
| 128 | 127 | albii 1819 |
. . . . . . . . . . . 12
⊢
(∀𝑖(𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑖(𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
| 129 | | df-ss 3968 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∩ ∪ 𝑓)
⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ ∀𝑖(𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
| 130 | | df-ral 3062 |
. . . . . . . . . . . 12
⊢
(∀𝑖 ∈
𝑧 (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑖(𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
| 131 | 128, 129,
130 | 3bitr4i 303 |
. . . . . . . . . . 11
⊢ ((𝑧 ∩ ∪ 𝑓)
⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ ∀𝑖 ∈ 𝑧 (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
| 132 | 123, 131 | imbitrrdi 252 |
. . . . . . . . . 10
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 133 | 90, 132 | anim12d 609 |
. . . . . . . . 9
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → ((𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)))) |
| 134 | 133 | reximdv 3170 |
. . . . . . . 8
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)))) |
| 135 | 134 | 3impia 1118 |
. . . . . . 7
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 136 | 135 | 3com23 1127 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ∧ 𝑓 ⊆ 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 137 | 86, 136 | syl3an2 1165 |
. . . . 5
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ∧ 𝑓 ⊆ 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 138 | 137 | 3expa 1119 |
. . . 4
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑓 ⊆ 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 139 | 85, 138 | sylan2 593 |
. . 3
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑓 ∈ 𝒫 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 140 | 84, 139 | ralrimia 3258 |
. 2
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
| 141 | 81, 140 | impbii 209 |
1
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |