Step | Hyp | Ref
| Expression |
1 | | simpl 481 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
2 | 1 | reximi 3074 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
3 | 2 | ralimi 3073 |
. . . 4
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
4 | | 0elpw 5352 |
. . . . . . 7
⊢ ∅
∈ 𝒫 𝑈 |
5 | 4 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ∅ ∈ 𝒫 𝑈) |
6 | | biidd 261 |
. . . . . 6
⊢
((⊤ ∧ 𝑓 =
∅) → (∃𝑤
∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ↔ ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
7 | 5, 6 | rspcdv 3601 |
. . . . 5
⊢ (⊤
→ (∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
8 | 7 | mptru 1541 |
. . . 4
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
9 | | inss1 4229 |
. . . . . 6
⊢ (𝑈 ∩ 𝑤) ⊆ 𝑈 |
10 | | sstr2 3987 |
. . . . . 6
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → ((𝑈 ∩ 𝑤) ⊆ 𝑈 → 𝒫 𝑧 ⊆ 𝑈)) |
11 | 9, 10 | mpi 20 |
. . . . 5
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → 𝒫 𝑧 ⊆ 𝑈) |
12 | 11 | reximi 3074 |
. . . 4
⊢
(∃𝑤 ∈
𝑈 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) → ∃𝑤 ∈ 𝑈 𝒫 𝑧 ⊆ 𝑈) |
13 | | rexex 3066 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 𝒫 𝑧 ⊆ 𝑈 → ∃𝑤𝒫 𝑧 ⊆ 𝑈) |
14 | | ax5e 1908 |
. . . . 5
⊢
(∃𝑤𝒫
𝑧 ⊆ 𝑈 → 𝒫 𝑧 ⊆ 𝑈) |
15 | 13, 14 | syl 17 |
. . . 4
⊢
(∃𝑤 ∈
𝑈 𝒫 𝑧 ⊆ 𝑈 → 𝒫 𝑧 ⊆ 𝑈) |
16 | 3, 8, 12, 15 | 4syl 19 |
. . 3
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → 𝒫 𝑧 ⊆ 𝑈) |
17 | | inss1 4229 |
. . . . . . . 8
⊢ (𝑈 ∩ 𝑔) ⊆ 𝑈 |
18 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
19 | 18 | inex2 5315 |
. . . . . . . . 9
⊢ (𝑈 ∩ 𝑔) ∈ V |
20 | 19 | elpw 4603 |
. . . . . . . 8
⊢ ((𝑈 ∩ 𝑔) ∈ 𝒫 𝑈 ↔ (𝑈 ∩ 𝑔) ⊆ 𝑈) |
21 | 17, 20 | mpbir 230 |
. . . . . . 7
⊢ (𝑈 ∩ 𝑔) ∈ 𝒫 𝑈 |
22 | | unieq 4918 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ∪ 𝑓 = ∪
(𝑈 ∩ 𝑔)) |
23 | 22 | ineq2d 4212 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑈 ∩ 𝑔) → (𝑧 ∩ ∪ 𝑓) = (𝑧 ∩ ∪ (𝑈 ∩ 𝑔))) |
24 | | ineq1 4205 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑈 ∩ 𝑔) → (𝑓 ∩ 𝒫 𝒫 𝑤) = ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) |
25 | 24 | unieqd 4920 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ∪ (𝑓 ∩ 𝒫 𝒫 𝑤) = ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) |
26 | 23, 25 | sseq12d 4014 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ((𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤) ↔ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤))) |
27 | 26 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑓 = (𝑈 ∩ 𝑔) → ((𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)))) |
28 | 27 | rexbidv 3169 |
. . . . . . . 8
⊢ (𝑓 = (𝑈 ∩ 𝑔) → (∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) ↔ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)))) |
29 | 28 | rspcv 3605 |
. . . . . . 7
⊢ ((𝑈 ∩ 𝑔) ∈ 𝒫 𝑈 → (∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)))) |
30 | 21, 29 | ax-mp 5 |
. . . . . 6
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤))) |
31 | 30 | alrimiv 1923 |
. . . . 5
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑔∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤))) |
32 | | inss2 4230 |
. . . . . . . 8
⊢ (𝑈 ∩ 𝑤) ⊆ 𝑤 |
33 | | sstr2 3987 |
. . . . . . . 8
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → ((𝑈 ∩ 𝑤) ⊆ 𝑤 → 𝒫 𝑧 ⊆ 𝑤)) |
34 | 32, 33 | mpi 20 |
. . . . . . 7
⊢
(𝒫 𝑧 ⊆
(𝑈 ∩ 𝑤) → 𝒫 𝑧 ⊆ 𝑤) |
35 | | an12 643 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔)) ↔ (𝑖 ∈ 𝑣 ∧ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔))) |
36 | | elin 3964 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑈 ∩ 𝑔) ↔ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔)) |
37 | 36 | bicomi 223 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔) ↔ 𝑣 ∈ (𝑈 ∩ 𝑔)) |
38 | 37 | anbi2i 621 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑣 ∧ (𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑔)) ↔ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
39 | 35, 38 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔)) ↔ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
40 | 39 | exbii 1843 |
. . . . . . . . . 10
⊢
(∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔)) ↔ ∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
41 | | df-rex 3061 |
. . . . . . . . . 10
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔))) |
42 | | eluni 4910 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ∪ (𝑈
∩ 𝑔) ↔
∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ (𝑈 ∩ 𝑔))) |
43 | 40, 41, 42 | 3bitr4i 302 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) ↔ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) |
44 | | simp1 1133 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) |
45 | | elin 3964 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ↔ (𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔))) |
46 | 45 | biimpri 227 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → 𝑖 ∈ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔))) |
47 | 46 | 3adant1 1127 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → 𝑖 ∈ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔))) |
48 | 44, 47 | sseldd 3981 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → 𝑖 ∈ ∪ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) |
49 | | eluni 4910 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ↔
∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤))) |
50 | 48, 49 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → ∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤))) |
51 | | elinel1 4195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → 𝑢 ∈ (𝑈 ∩ 𝑔)) |
52 | 51 | elin2d 4199 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → 𝑢 ∈ 𝑔) |
53 | | elinel2 4196 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → 𝑢 ∈ 𝒫 𝒫 𝑤) |
54 | | elpwpw 5104 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ 𝒫 𝒫
𝑤 ↔ (𝑢 ∈ V ∧ ∪ 𝑢
⊆ 𝑤)) |
55 | 54 | simprbi 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ 𝒫 𝒫
𝑤 → ∪ 𝑢
⊆ 𝑤) |
56 | 53, 55 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → ∪ 𝑢
⊆ 𝑤) |
57 | 52, 56 | jca 510 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤) → (𝑢 ∈ 𝑔 ∧ ∪ 𝑢 ⊆ 𝑤)) |
58 | 57 | anim2i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → (𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑔 ∧ ∪ 𝑢 ⊆ 𝑤))) |
59 | | an12 643 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑔 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
60 | 58, 59 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → (𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
61 | 60 | eximi 1830 |
. . . . . . . . . . . 12
⊢
(∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → ∃𝑢(𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
62 | | df-rex 3061 |
. . . . . . . . . . . 12
⊢
(∃𝑢 ∈
𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑢(𝑢 ∈ 𝑔 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
63 | 61, 62 | sylibr 233 |
. . . . . . . . . . 11
⊢
(∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ ((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫 𝑤)) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
64 | 50, 63 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ (𝑈 ∩ 𝑔)) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
65 | 64 | 3expia 1118 |
. . . . . . . . 9
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧) → (𝑖 ∈ ∪ (𝑈 ∩ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
66 | 43, 65 | biimtrid 241 |
. . . . . . . 8
⊢ (((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) ∧ 𝑖 ∈ 𝑧) → (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
67 | 66 | ralrimiva 3136 |
. . . . . . 7
⊢ ((𝑧 ∩ ∪ (𝑈
∩ 𝑔)) ⊆ ∪ ((𝑈
∩ 𝑔) ∩ 𝒫
𝒫 𝑤) →
∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
68 | 34, 67 | anim12i 611 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) → (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
69 | 68 | reximi 3074 |
. . . . 5
⊢
(∃𝑤 ∈
𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ (𝑈 ∩ 𝑔)) ⊆ ∪
((𝑈 ∩ 𝑔) ∩ 𝒫 𝒫
𝑤)) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
70 | 31, 69 | sylg 1818 |
. . . 4
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑔∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
71 | | elequ2 2114 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑣 ∈ 𝑓 ↔ 𝑣 ∈ 𝑔)) |
72 | 71 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔))) |
73 | 72 | rexbidv 3169 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔))) |
74 | | rexeq 3311 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
75 | 73, 74 | imbi12d 343 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
76 | 75 | ralbidv 3168 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
77 | 76 | anbi2d 628 |
. . . . . 6
⊢ (𝑓 = 𝑔 → ((𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
78 | 77 | rexbidv 3169 |
. . . . 5
⊢ (𝑓 = 𝑔 → (∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
79 | 78 | cbvalvw 2032 |
. . . 4
⊢
(∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ ∀𝑔∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑔) → ∃𝑢 ∈ 𝑔 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
80 | 70, 79 | sylibr 233 |
. . 3
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
81 | 16, 80 | jca 510 |
. 2
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) → (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |
82 | | nfv 1910 |
. . . 4
⊢
Ⅎ𝑓𝒫
𝑧 ⊆ 𝑈 |
83 | | nfa1 2141 |
. . . 4
⊢
Ⅎ𝑓∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
84 | 82, 83 | nfan 1895 |
. . 3
⊢
Ⅎ𝑓(𝒫
𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
85 | | elpwi 4606 |
. . . 4
⊢ (𝑓 ∈ 𝒫 𝑈 → 𝑓 ⊆ 𝑈) |
86 | | sp 2172 |
. . . . . 6
⊢
(∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) |
87 | | ssin 4231 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝒫
𝑧 ⊆ 𝑤) ↔ 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
88 | 87 | biimpi 215 |
. . . . . . . . . . . 12
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝒫
𝑧 ⊆ 𝑤) → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤)) |
89 | 88 | ex 411 |
. . . . . . . . . . 11
⊢
(𝒫 𝑧 ⊆
𝑈 → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
90 | 89 | adantr 479 |
. . . . . . . . . 10
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤))) |
91 | | simp3 1135 |
. . . . . . . . . . . . . . . . 17
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → 𝑖 ∈ ∪ 𝑓) |
92 | | eluni 4910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ∪ 𝑓
↔ ∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
93 | 91, 92 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
94 | | simpl2 1189 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑓 ⊆ 𝑈) |
95 | | simprr 771 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝑓) |
96 | 94, 95 | sseldd 3981 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑣 ∈ 𝑈) |
97 | | simprl 769 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → 𝑖 ∈ 𝑣) |
98 | 96, 97, 95 | 3jca 1125 |
. . . . . . . . . . . . . . . . . 18
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) → (𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
99 | 98 | ex 411 |
. . . . . . . . . . . . . . . . 17
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ((𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → (𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
100 | 99 | eximdv 1913 |
. . . . . . . . . . . . . . . 16
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → (∃𝑣(𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
101 | 93, 100 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
102 | | df-rex 3061 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
103 | | 3anass 1092 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ (𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
104 | 103 | exbii 1843 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
105 | 102, 104 | bitr4i 277 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑣 ∈
𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) ↔ ∃𝑣(𝑣 ∈ 𝑈 ∧ 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
106 | 101, 105 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ 𝑖 ∈ ∪ 𝑓) → ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓)) |
107 | 106 | 3expia 1118 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (𝑖 ∈ ∪ 𝑓 → ∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓))) |
108 | | elin 3964 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ (𝑢 ∈ 𝑓 ∧ 𝑢 ∈ 𝒫 𝒫 𝑤)) |
109 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑢 ∈ V |
110 | 109, 54 | mpbiran 707 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ 𝒫 𝒫
𝑤 ↔ ∪ 𝑢
⊆ 𝑤) |
111 | 110 | anbi2i 621 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ∈ 𝑓 ∧ 𝑢 ∈ 𝒫 𝒫 𝑤) ↔ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤)) |
112 | 108, 111 | bitri 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤)) |
113 | 112 | anbi2i 621 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤))) |
114 | | an12 643 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑖 ∈ 𝑢 ∧ (𝑢 ∈ 𝑓 ∧ ∪ 𝑢 ⊆ 𝑤))) |
115 | 113, 114 | bitr4i 277 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
116 | 115 | exbii 1843 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∃𝑢(𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
117 | | eluni 4910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ∪ (𝑓
∩ 𝒫 𝒫 𝑤) ↔ ∃𝑢(𝑖 ∈ 𝑢 ∧ 𝑢 ∈ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
118 | | df-rex 3061 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑢 ∈
𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ ∃𝑢(𝑢 ∈ 𝑓 ∧ (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
119 | 116, 117,
118 | 3bitr4i 302 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ∪ (𝑓
∩ 𝒫 𝒫 𝑤) ↔ ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) |
120 | 119 | biimpri 227 |
. . . . . . . . . . . . . 14
⊢
(∃𝑢 ∈
𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) |
121 | 120 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
122 | 107, 121 | imim12d 81 |
. . . . . . . . . . . 12
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → ((∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
123 | 122 | ralimdv 3159 |
. . . . . . . . . . 11
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → ∀𝑖 ∈ 𝑧 (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
124 | | elin 3964 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝑧 ∩ ∪ 𝑓) ↔ (𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ 𝑓)) |
125 | 124 | imbi1i 348 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ((𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
126 | | impexp 449 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ 𝑧 ∧ 𝑖 ∈ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
127 | 125, 126 | bitri 274 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
128 | 127 | albii 1814 |
. . . . . . . . . . . 12
⊢
(∀𝑖(𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑖(𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
129 | | df-ss 3965 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∩ ∪ 𝑓)
⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ ∀𝑖(𝑖 ∈ (𝑧 ∩ ∪ 𝑓) → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
130 | | df-ral 3052 |
. . . . . . . . . . . 12
⊢
(∀𝑖 ∈
𝑧 (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ ∀𝑖(𝑖 ∈ 𝑧 → (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) |
131 | 128, 129,
130 | 3bitr4i 302 |
. . . . . . . . . . 11
⊢ ((𝑧 ∩ ∪ 𝑓)
⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤) ↔ ∀𝑖 ∈ 𝑧 (𝑖 ∈ ∪ 𝑓 → 𝑖 ∈ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) |
132 | 123, 131 | imbitrrdi 251 |
. . . . . . . . . 10
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) → (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
133 | 90, 132 | anim12d 607 |
. . . . . . . . 9
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → ((𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)))) |
134 | 133 | reximdv 3160 |
. . . . . . . 8
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈) → (∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)))) |
135 | 134 | 3impia 1114 |
. . . . . . 7
⊢
((𝒫 𝑧
⊆ 𝑈 ∧ 𝑓 ⊆ 𝑈 ∧ ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
136 | 135 | 3com23 1123 |
. . . . . 6
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ∧ 𝑓 ⊆ 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
137 | 86, 136 | syl3an2 1161 |
. . . . 5
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ∧ 𝑓 ⊆ 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
138 | 137 | 3expa 1115 |
. . . 4
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑓 ⊆ 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
139 | 85, 138 | sylan2 591 |
. . 3
⊢
(((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑓 ∈ 𝒫 𝑈) → ∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
140 | 84, 139 | ralrimia 3246 |
. 2
⊢
((𝒫 𝑧
⊆ 𝑈 ∧
∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤))) |
141 | 81, 140 | impbii 208 |
1
⊢
(∀𝑓 ∈
𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓
∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) |