Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwssb | Structured version Visualization version GIF version |
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
pwssb | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5025 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
2 | unissb 4870 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3063 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: ustuni 23286 metustfbas 23619 intlidl 31504 dmvlsiga 31997 1stmbfm 32127 2ndmbfm 32128 dya2iocucvr 32151 gneispace 41633 preimafvsspwdm 44729 |
Copyright terms: Public domain | W3C validator |