![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwssb | Structured version Visualization version GIF version |
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
pwssb | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5123 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
2 | unissb 4963 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wral 3067 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 |
This theorem is referenced by: ustuni 24256 metustfbas 24591 intlidl 33413 dmvlsiga 34093 1stmbfm 34225 2ndmbfm 34226 dya2iocucvr 34249 gneispace 44096 preimafvsspwdm 47263 usgrexmpl1lem 47836 usgrexmpl2lem 47841 |
Copyright terms: Public domain | W3C validator |