MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssb Structured version   Visualization version   GIF version

Theorem pwssb 5041
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 5040 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissb 4883 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
31, 2bitri 274 1 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3062  wss 3896  𝒫 cpw 4543   cuni 4848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-v 3443  df-in 3903  df-ss 3913  df-pw 4545  df-uni 4849
This theorem is referenced by:  ustuni  23449  metustfbas  23784  intlidl  31707  dmvlsiga  32203  1stmbfm  32333  2ndmbfm  32334  dya2iocucvr  32357  gneispace  41972  preimafvsspwdm  45100
  Copyright terms: Public domain W3C validator