MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssb Structured version   Visualization version   GIF version

Theorem pwssb 5060
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 5059 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissb 4899 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
31, 2bitri 275 1 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3044  wss 3911  𝒫 cpw 4559   cuni 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3446  df-ss 3928  df-pw 4561  df-uni 4868
This theorem is referenced by:  ustuni  24090  metustfbas  24421  intlidl  33364  dmvlsiga  34092  1stmbfm  34224  2ndmbfm  34225  dya2iocucvr  34248  gneispace  44096  preimafvsspwdm  47363  usgrexmpl1lem  47985  usgrexmpl2lem  47990
  Copyright terms: Public domain W3C validator