MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssb Structured version   Visualization version   GIF version

Theorem pwssb 5030
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 5029 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissb 4873 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
31, 2bitri 274 1 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3064  wss 3887  𝒫 cpw 4533   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840
This theorem is referenced by:  ustuni  23378  metustfbas  23713  intlidl  31602  dmvlsiga  32097  1stmbfm  32227  2ndmbfm  32228  dya2iocucvr  32251  gneispace  41744  preimafvsspwdm  44841
  Copyright terms: Public domain W3C validator