Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwssb | Structured version Visualization version GIF version |
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
pwssb | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 5040 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
2 | unissb 4883 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3062 ⊆ wss 3896 𝒫 cpw 4543 ∪ cuni 4848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-v 3443 df-in 3903 df-ss 3913 df-pw 4545 df-uni 4849 |
This theorem is referenced by: ustuni 23449 metustfbas 23784 intlidl 31707 dmvlsiga 32203 1stmbfm 32333 2ndmbfm 32334 dya2iocucvr 32357 gneispace 41972 preimafvsspwdm 45100 |
Copyright terms: Public domain | W3C validator |