MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssb Structured version   Visualization version   GIF version

Theorem pwssb 5047
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 5046 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissb 4889 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
31, 2bitri 275 1 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3047  wss 3897  𝒫 cpw 4547   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-pw 4549  df-uni 4857
This theorem is referenced by:  ustuni  24141  metustfbas  24472  intlidl  33385  dmvlsiga  34142  1stmbfm  34273  2ndmbfm  34274  dya2iocucvr  34297  gneispace  44237  preimafvsspwdm  47499  usgrexmpl1lem  48131  usgrexmpl2lem  48136
  Copyright terms: Public domain W3C validator