| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwssb | Structured version Visualization version GIF version | ||
| Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
| Ref | Expression |
|---|---|
| pwssb | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni 5046 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
| 2 | unissb 4889 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3047 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-pw 4549 df-uni 4857 |
| This theorem is referenced by: ustuni 24141 metustfbas 24472 intlidl 33385 dmvlsiga 34142 1stmbfm 34273 2ndmbfm 34274 dya2iocucvr 34297 gneispace 44237 preimafvsspwdm 47499 usgrexmpl1lem 48131 usgrexmpl2lem 48136 |
| Copyright terms: Public domain | W3C validator |