| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwssb | Structured version Visualization version GIF version | ||
| Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
| Ref | Expression |
|---|---|
| pwssb | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni 5064 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
| 2 | unissb 4903 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-pw 4565 df-uni 4872 |
| This theorem is referenced by: ustuni 24114 metustfbas 24445 intlidl 33391 dmvlsiga 34119 1stmbfm 34251 2ndmbfm 34252 dya2iocucvr 34275 gneispace 44123 preimafvsspwdm 47390 usgrexmpl1lem 48012 usgrexmpl2lem 48017 |
| Copyright terms: Public domain | W3C validator |