MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssb Structured version   Visualization version   GIF version

Theorem pwssb 5105
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 5104 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissb 4944 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
31, 2bitri 274 1 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3059  wss 3949  𝒫 cpw 4603   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-in 3956  df-ss 3966  df-pw 4605  df-uni 4910
This theorem is referenced by:  ustuni  23953  metustfbas  24288  intlidl  32808  dmvlsiga  33423  1stmbfm  33555  2ndmbfm  33556  dya2iocucvr  33579  gneispace  43189  preimafvsspwdm  46357
  Copyright terms: Public domain W3C validator