Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwunicl | Structured version Visualization version GIF version |
Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
elpwunicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) |
Ref | Expression |
---|---|
elpwunicl | ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwunicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) | |
2 | elpwpwel 7595 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: ldgenpisyslem1 32031 |
Copyright terms: Public domain | W3C validator |