| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwunicl | Structured version Visualization version GIF version | ||
| Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| elpwunicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| elpwunicl | ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwunicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) | |
| 2 | elpwpwel 7700 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 𝒫 cpw 4550 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pow 5303 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-pw 4552 df-uni 4860 |
| This theorem is referenced by: ldgenpisyslem1 34174 |
| Copyright terms: Public domain | W3C validator |