Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwunicl Structured version   Visualization version   GIF version

Theorem elpwunicl 32490
Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.)
Hypothesis
Ref Expression
elpwunicl.1 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
Assertion
Ref Expression
elpwunicl (𝜑 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwunicl
StepHypRef Expression
1 elpwunicl.1 . 2 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
2 elpwpwel 7746 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
31, 2sylib 218 1 (𝜑 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  𝒫 cpw 4566   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-pow 5323  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-uni 4875
This theorem is referenced by:  ldgenpisyslem1  34160
  Copyright terms: Public domain W3C validator