| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwunicl | Structured version Visualization version GIF version | ||
| Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.) |
| Ref | Expression |
|---|---|
| elpwunicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| elpwunicl | ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwunicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) | |
| 2 | elpwpwel 7746 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 𝒫 cpw 4566 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pow 5323 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 df-uni 4875 |
| This theorem is referenced by: ldgenpisyslem1 34160 |
| Copyright terms: Public domain | W3C validator |