Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwunicl Structured version   Visualization version   GIF version

Theorem elpwunicl 31781
Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.)
Hypothesis
Ref Expression
elpwunicl.1 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
Assertion
Ref Expression
elpwunicl (𝜑 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwunicl
StepHypRef Expression
1 elpwunicl.1 . 2 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
2 elpwpwel 7753 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
31, 2sylib 217 1 (𝜑 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  𝒫 cpw 4602   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-pow 5363  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-pw 4604  df-uni 4909
This theorem is referenced by:  ldgenpisyslem1  33156
  Copyright terms: Public domain W3C validator