![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwunicl | Structured version Visualization version GIF version |
Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.) |
Ref | Expression |
---|---|
elpwunicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) |
Ref | Expression |
---|---|
elpwunicl | ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwunicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝒫 𝐵) | |
2 | elpwpwel 7753 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 𝒫 cpw 4602 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-pow 5363 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-pw 4604 df-uni 4909 |
This theorem is referenced by: ldgenpisyslem1 33156 |
Copyright terms: Public domain | W3C validator |