Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwunicl Structured version   Visualization version   GIF version

Theorem elpwunicl 32590
Description: Closure of a set union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 21-Jun-2020.) (Proof shortened by BJ, 6-Apr-2024.)
Hypothesis
Ref Expression
elpwunicl.1 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
Assertion
Ref Expression
elpwunicl (𝜑 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwunicl
StepHypRef Expression
1 elpwunicl.1 . 2 (𝜑𝐴 ∈ 𝒫 𝒫 𝐵)
2 elpwpwel 7793 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
31, 2sylib 218 1 (𝜑 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  𝒫 cpw 4608   cuni 4915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5305  ax-pow 5374  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3483  df-in 3973  df-ss 3983  df-pw 4610  df-uni 4916
This theorem is referenced by:  ldgenpisyslem1  34158
  Copyright terms: Public domain W3C validator