| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcdva | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| rspcdva.1 | ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) |
| rspcdva.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| rspcdva.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| rspcdva | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdva.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 2 | rspcdva.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 3 | rspcdva.1 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | rspcv 3602 | . 2 ⊢ (𝐶 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → 𝜒) |
| Copyright terms: Public domain | W3C validator |