Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcdva | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
rspcdva.1 | ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) |
rspcdva.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
rspcdva.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
Ref | Expression |
---|---|
rspcdva | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdva.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | rspcdva.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
3 | rspcdva.1 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) | |
4 | 3 | rspcv 3562 | . 2 ⊢ (𝐶 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |